The skeletal proteome of the coral Acropora millepora: the evolution of calcification by co-option and domain shuffling.
14 pages International audience In corals, biocalcification is a major function that may be drastically affected by ocean acidification (OA). Scleractinian corals grow by building up aragonitic exoskeletons that provide support and protection for soft tissues. Although this process has been extensiv...
Published in: | Molecular Biology and Evolution |
---|---|
Main Authors: | , , , , , , , |
Other Authors: | , , , , , , , , , , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
HAL CCSD
2013
|
Subjects: | |
Online Access: | https://hal.science/hal-00853820 https://doi.org/10.1093/molbev/mst109 |
id |
ftunivlyon1:oai:HAL:hal-00853820v1 |
---|---|
record_format |
openpolar |
institution |
Open Polar |
collection |
HAL Lyon 1 (University Claude Bernard Lyon 1) |
op_collection_id |
ftunivlyon1 |
language |
English |
topic |
biomineralization calcium carbonate skeleton scleractinian proteomics evolution [SDV.IB.BIO]Life Sciences [q-bio]/Bioengineering/Biomaterials [SDV.BBM.GTP]Life Sciences [q-bio]/Biochemistry Molecular Biology/Genomics [q-bio.GN] |
spellingShingle |
biomineralization calcium carbonate skeleton scleractinian proteomics evolution [SDV.IB.BIO]Life Sciences [q-bio]/Bioengineering/Biomaterials [SDV.BBM.GTP]Life Sciences [q-bio]/Biochemistry Molecular Biology/Genomics [q-bio.GN] Ramos-Silva, Paula Kaandorp, Jaap Huisman, Lotte Marie, Benjamin Zanella-Cléon, Isabelle Guichard, Nathalie Miller, David J. Marin, Frédéric The skeletal proteome of the coral Acropora millepora: the evolution of calcification by co-option and domain shuffling. |
topic_facet |
biomineralization calcium carbonate skeleton scleractinian proteomics evolution [SDV.IB.BIO]Life Sciences [q-bio]/Bioengineering/Biomaterials [SDV.BBM.GTP]Life Sciences [q-bio]/Biochemistry Molecular Biology/Genomics [q-bio.GN] |
description |
14 pages International audience In corals, biocalcification is a major function that may be drastically affected by ocean acidification (OA). Scleractinian corals grow by building up aragonitic exoskeletons that provide support and protection for soft tissues. Although this process has been extensively studied, the molecular basis of biocalcification is poorly understood. Notably lacking is a comprehensive catalog of the skeleton-occluded proteins-the skeletal organic matrix proteins (SOMPs) that are thought to regulate the mineral deposition. Using a combination of proteomics and transcriptomics, we report the first survey of such proteins in the staghorn coral Acropora millepora. The organic matrix (OM) extracted from the coral skeleton was analyzed by mass spectrometry and bioinformatics, enabling the identification of 36 SOMPs. These results provide novel insights into the molecular basis of coral calcification and the macroevolution of metazoan calcifying systems, whereas establishing a platform for studying the impact of OA at molecular level. Besides secreted proteins, extracellular regions of transmembrane proteins are also present, suggesting a close control of aragonite deposition by the calicoblastic epithelium. In addition to the expected SOMPs (Asp/Glu-rich, galaxins), the skeletal repertoire included several proteins containing known extracellular matrix domains. From an evolutionary perspective, the number of coral-specific proteins is low, many SOMPs having counterparts in the noncalcifying cnidarians. Extending the comparison with the skeletal OM proteomes of other metazoans allowed the identification of a pool of functional domains shared between phyla. These data suggest that co-option and domain shuffling may be general mechanisms by which the trait of calcification has evolved. |
author2 |
Biogéosciences UMR 6282 (BGS) Université de Bourgogne (UB)-Centre National de la Recherche Scientifique (CNRS) Section Computational Science University of Amsterdam Amsterdam = Universiteit van Amsterdam (UvA) ARC Centre of Excellence for Coral Reef Studies (CoralCoE) James Cook University (JCU) Molécules de Communication et Adaptation des Micro-Organismes (MCAM) Muséum national d'Histoire naturelle (MNHN)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS) BioSciences Lyon-Gerland (BLG) École normale supérieure de Lyon (ENS de Lyon)-Institut National de la Recherche Agronomique (INRA)-Université Claude Bernard Lyon 1 (UCBL) Université de Lyon-Université de Lyon-Hospices Civils de Lyon (HCL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS) Work supported by the EU FP7 Marie Curie Initial Training Network BIOMINTEC (PITNGA-2008-215507, www.biomintec.de, coordinator H.C. Schröder), by the EU FP7 Knowledge Based Bio-Economy project BioPreDyn grant 289434 (www.biopredyn.eu), and by the COST project TD0903 ("Biomineralix", www.biomineralix.eu, 2009-2013) |
format |
Article in Journal/Newspaper |
author |
Ramos-Silva, Paula Kaandorp, Jaap Huisman, Lotte Marie, Benjamin Zanella-Cléon, Isabelle Guichard, Nathalie Miller, David J. Marin, Frédéric |
author_facet |
Ramos-Silva, Paula Kaandorp, Jaap Huisman, Lotte Marie, Benjamin Zanella-Cléon, Isabelle Guichard, Nathalie Miller, David J. Marin, Frédéric |
author_sort |
Ramos-Silva, Paula |
title |
The skeletal proteome of the coral Acropora millepora: the evolution of calcification by co-option and domain shuffling. |
title_short |
The skeletal proteome of the coral Acropora millepora: the evolution of calcification by co-option and domain shuffling. |
title_full |
The skeletal proteome of the coral Acropora millepora: the evolution of calcification by co-option and domain shuffling. |
title_fullStr |
The skeletal proteome of the coral Acropora millepora: the evolution of calcification by co-option and domain shuffling. |
title_full_unstemmed |
The skeletal proteome of the coral Acropora millepora: the evolution of calcification by co-option and domain shuffling. |
title_sort |
skeletal proteome of the coral acropora millepora: the evolution of calcification by co-option and domain shuffling. |
publisher |
HAL CCSD |
publishDate |
2013 |
url |
https://hal.science/hal-00853820 https://doi.org/10.1093/molbev/mst109 |
genre |
Ocean acidification |
genre_facet |
Ocean acidification |
op_source |
ISSN: 0737-4038 EISSN: 1537-1719 Molecular Biology and Evolution https://hal.science/hal-00853820 Molecular Biology and Evolution, 2013, 30 (9), pp.2099-2112. ⟨10.1093/molbev/mst109⟩ |
op_relation |
info:eu-repo/semantics/altIdentifier/doi/10.1093/molbev/mst109 info:eu-repo/semantics/altIdentifier/pmid/23765379 hal-00853820 https://hal.science/hal-00853820 doi:10.1093/molbev/mst109 PUBMED: 23765379 PUBMEDCENTRAL: PMC3748352 |
op_doi |
https://doi.org/10.1093/molbev/mst109 |
container_title |
Molecular Biology and Evolution |
container_volume |
30 |
container_issue |
9 |
container_start_page |
2099 |
op_container_end_page |
2112 |
_version_ |
1798852643311845376 |
spelling |
ftunivlyon1:oai:HAL:hal-00853820v1 2024-05-12T08:09:24+00:00 The skeletal proteome of the coral Acropora millepora: the evolution of calcification by co-option and domain shuffling. Ramos-Silva, Paula Kaandorp, Jaap Huisman, Lotte Marie, Benjamin Zanella-Cléon, Isabelle Guichard, Nathalie Miller, David J. Marin, Frédéric Biogéosciences UMR 6282 (BGS) Université de Bourgogne (UB)-Centre National de la Recherche Scientifique (CNRS) Section Computational Science University of Amsterdam Amsterdam = Universiteit van Amsterdam (UvA) ARC Centre of Excellence for Coral Reef Studies (CoralCoE) James Cook University (JCU) Molécules de Communication et Adaptation des Micro-Organismes (MCAM) Muséum national d'Histoire naturelle (MNHN)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS) BioSciences Lyon-Gerland (BLG) École normale supérieure de Lyon (ENS de Lyon)-Institut National de la Recherche Agronomique (INRA)-Université Claude Bernard Lyon 1 (UCBL) Université de Lyon-Université de Lyon-Hospices Civils de Lyon (HCL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS) Work supported by the EU FP7 Marie Curie Initial Training Network BIOMINTEC (PITNGA-2008-215507, www.biomintec.de, coordinator H.C. Schröder), by the EU FP7 Knowledge Based Bio-Economy project BioPreDyn grant 289434 (www.biopredyn.eu), and by the COST project TD0903 ("Biomineralix", www.biomineralix.eu, 2009-2013) 2013-09 https://hal.science/hal-00853820 https://doi.org/10.1093/molbev/mst109 en eng HAL CCSD Oxford University Press (OUP) info:eu-repo/semantics/altIdentifier/doi/10.1093/molbev/mst109 info:eu-repo/semantics/altIdentifier/pmid/23765379 hal-00853820 https://hal.science/hal-00853820 doi:10.1093/molbev/mst109 PUBMED: 23765379 PUBMEDCENTRAL: PMC3748352 ISSN: 0737-4038 EISSN: 1537-1719 Molecular Biology and Evolution https://hal.science/hal-00853820 Molecular Biology and Evolution, 2013, 30 (9), pp.2099-2112. ⟨10.1093/molbev/mst109⟩ biomineralization calcium carbonate skeleton scleractinian proteomics evolution [SDV.IB.BIO]Life Sciences [q-bio]/Bioengineering/Biomaterials [SDV.BBM.GTP]Life Sciences [q-bio]/Biochemistry Molecular Biology/Genomics [q-bio.GN] info:eu-repo/semantics/article Journal articles 2013 ftunivlyon1 https://doi.org/10.1093/molbev/mst109 2024-04-18T01:22:06Z 14 pages International audience In corals, biocalcification is a major function that may be drastically affected by ocean acidification (OA). Scleractinian corals grow by building up aragonitic exoskeletons that provide support and protection for soft tissues. Although this process has been extensively studied, the molecular basis of biocalcification is poorly understood. Notably lacking is a comprehensive catalog of the skeleton-occluded proteins-the skeletal organic matrix proteins (SOMPs) that are thought to regulate the mineral deposition. Using a combination of proteomics and transcriptomics, we report the first survey of such proteins in the staghorn coral Acropora millepora. The organic matrix (OM) extracted from the coral skeleton was analyzed by mass spectrometry and bioinformatics, enabling the identification of 36 SOMPs. These results provide novel insights into the molecular basis of coral calcification and the macroevolution of metazoan calcifying systems, whereas establishing a platform for studying the impact of OA at molecular level. Besides secreted proteins, extracellular regions of transmembrane proteins are also present, suggesting a close control of aragonite deposition by the calicoblastic epithelium. In addition to the expected SOMPs (Asp/Glu-rich, galaxins), the skeletal repertoire included several proteins containing known extracellular matrix domains. From an evolutionary perspective, the number of coral-specific proteins is low, many SOMPs having counterparts in the noncalcifying cnidarians. Extending the comparison with the skeletal OM proteomes of other metazoans allowed the identification of a pool of functional domains shared between phyla. These data suggest that co-option and domain shuffling may be general mechanisms by which the trait of calcification has evolved. Article in Journal/Newspaper Ocean acidification HAL Lyon 1 (University Claude Bernard Lyon 1) Molecular Biology and Evolution 30 9 2099 2112 |