Parameterization of density-driven downsloping flow for a coarse-resolution ocean model in z-coordinate

In the World Ocean, densest waters found on the continental shelves induce density driven downsloping currents that can influence the deep ocean water masses properties. This process is poorly represented in z-coordinate ocean models, especially in Ocean General Circulation Model (OGCM) with coarse...

Full description

Bibliographic Details
Published in:Tellus A
Main Authors: Campin, Jean- Michel, Goosse, Hugues
Other Authors: UCL - SC/PHYS - Département de physique
Format: Article in Journal/Newspaper
Language:English
Published: Munksgaard Int Publ Ltd 1999
Subjects:
Online Access:http://hdl.handle.net/2078.1/44360
https://doi.org/10.1034/j.1600-0870.1999.t01-3-00006.x
id ftunivlouvain:oai:dial.uclouvain.be:boreal:44360
record_format openpolar
spelling ftunivlouvain:oai:dial.uclouvain.be:boreal:44360 2024-05-19T07:30:09+00:00 Parameterization of density-driven downsloping flow for a coarse-resolution ocean model in z-coordinate Campin, Jean- Michel Goosse, Hugues UCL - SC/PHYS - Département de physique 1999 http://hdl.handle.net/2078.1/44360 https://doi.org/10.1034/j.1600-0870.1999.t01-3-00006.x eng eng Munksgaard Int Publ Ltd boreal:44360 http://hdl.handle.net/2078.1/44360 doi:10.1034/j.1600-0870.1999.t01-3-00006.x urn:ISSN:0280-6495 urn:EISSN:1600-0870 info:eu-repo/semantics/openAccess Tellus. Series A: Dynamic Meteorology and Oceanography, Vol. 51, no. 3, p. 412-430 (1999) CISM : CECI info:eu-repo/semantics/article 1999 ftunivlouvain https://doi.org/10.1034/j.1600-0870.1999.t01-3-00006.x 2024-04-24T01:48:21Z In the World Ocean, densest waters found on the continental shelves induce density driven downsloping currents that can influence the deep ocean water masses properties. This process is poorly represented in z-coordinate ocean models, especially in Ocean General Circulation Model (OGCM) with coarse resolution in both horizontal and vertical directions. Consequently, continental shelves appear to be too isolated from the open ocean, whereas the density remains too low in the deep ocean. This study presents a simple parameterization of downsloping flow designed for z-coordinate, coarse resolution ocean model. At the shelf break, when the density on the shelf is higher than that in the neighbouring deep water column, a downsloping current is set up. This current is linearly related to the horizontal density gradient between the two adjacent boxes, using a prescribed coefficient. For simplicity, a uniform value of the coefficient is used here, although it should ideally vary in space. From the shelf, the downsloping flow is assumed to go downward along the slope until it reaches a level of equal density. An upward return flow of equal magnitude maintains the conservation of mass. This parameterization has been implemented in an OGCM and two experiments, with and without this scheme, have been integrated until equilibrium using restoring boundary conditions. The impact of the downsloping parameterization on the global ocean is dominated by the improvement of the Antarctic bottom water circulation and water mass properties. The parameterization increases the density of the deep ocean and tends to reduce the intensity and depth of the North Atlantic deep water circulation, which is in better agreement with observations. As a result of a higher exchange with the open ocean, the properties of continental shelf waters are also improved, with a marked reduction of the Antarctic shelves salinities. Therefore, this simple parameterization leads to a significant improvement of the model results, at little computational cost. Article in Journal/Newspaper Antarc* Antarctic North Atlantic Deep Water North Atlantic DIAL@UCLouvain (Université catholique de Louvain) Tellus A 51 3 412 430
institution Open Polar
collection DIAL@UCLouvain (Université catholique de Louvain)
op_collection_id ftunivlouvain
language English
topic CISM : CECI
spellingShingle CISM : CECI
Campin, Jean- Michel
Goosse, Hugues
Parameterization of density-driven downsloping flow for a coarse-resolution ocean model in z-coordinate
topic_facet CISM : CECI
description In the World Ocean, densest waters found on the continental shelves induce density driven downsloping currents that can influence the deep ocean water masses properties. This process is poorly represented in z-coordinate ocean models, especially in Ocean General Circulation Model (OGCM) with coarse resolution in both horizontal and vertical directions. Consequently, continental shelves appear to be too isolated from the open ocean, whereas the density remains too low in the deep ocean. This study presents a simple parameterization of downsloping flow designed for z-coordinate, coarse resolution ocean model. At the shelf break, when the density on the shelf is higher than that in the neighbouring deep water column, a downsloping current is set up. This current is linearly related to the horizontal density gradient between the two adjacent boxes, using a prescribed coefficient. For simplicity, a uniform value of the coefficient is used here, although it should ideally vary in space. From the shelf, the downsloping flow is assumed to go downward along the slope until it reaches a level of equal density. An upward return flow of equal magnitude maintains the conservation of mass. This parameterization has been implemented in an OGCM and two experiments, with and without this scheme, have been integrated until equilibrium using restoring boundary conditions. The impact of the downsloping parameterization on the global ocean is dominated by the improvement of the Antarctic bottom water circulation and water mass properties. The parameterization increases the density of the deep ocean and tends to reduce the intensity and depth of the North Atlantic deep water circulation, which is in better agreement with observations. As a result of a higher exchange with the open ocean, the properties of continental shelf waters are also improved, with a marked reduction of the Antarctic shelves salinities. Therefore, this simple parameterization leads to a significant improvement of the model results, at little computational cost.
author2 UCL - SC/PHYS - Département de physique
format Article in Journal/Newspaper
author Campin, Jean- Michel
Goosse, Hugues
author_facet Campin, Jean- Michel
Goosse, Hugues
author_sort Campin, Jean- Michel
title Parameterization of density-driven downsloping flow for a coarse-resolution ocean model in z-coordinate
title_short Parameterization of density-driven downsloping flow for a coarse-resolution ocean model in z-coordinate
title_full Parameterization of density-driven downsloping flow for a coarse-resolution ocean model in z-coordinate
title_fullStr Parameterization of density-driven downsloping flow for a coarse-resolution ocean model in z-coordinate
title_full_unstemmed Parameterization of density-driven downsloping flow for a coarse-resolution ocean model in z-coordinate
title_sort parameterization of density-driven downsloping flow for a coarse-resolution ocean model in z-coordinate
publisher Munksgaard Int Publ Ltd
publishDate 1999
url http://hdl.handle.net/2078.1/44360
https://doi.org/10.1034/j.1600-0870.1999.t01-3-00006.x
genre Antarc*
Antarctic
North Atlantic Deep Water
North Atlantic
genre_facet Antarc*
Antarctic
North Atlantic Deep Water
North Atlantic
op_source Tellus. Series A: Dynamic Meteorology and Oceanography, Vol. 51, no. 3, p. 412-430 (1999)
op_relation boreal:44360
http://hdl.handle.net/2078.1/44360
doi:10.1034/j.1600-0870.1999.t01-3-00006.x
urn:ISSN:0280-6495
urn:EISSN:1600-0870
op_rights info:eu-repo/semantics/openAccess
op_doi https://doi.org/10.1034/j.1600-0870.1999.t01-3-00006.x
container_title Tellus A
container_volume 51
container_issue 3
container_start_page 412
op_container_end_page 430
_version_ 1799484100293165056