Why do we need to care about the evolution of mineral-organic carbon interactions in permafrost upon thawing?

Evidence is mounting that permafrost thaw represents a tipping element in the Earth climate system due to permafrost carbon emissions. Yet uncertainties are associated with how this will unfold. Permafrost contains 1460-1600 Gt of organic carbon (OC), from which 15±3% could be emitted as greenhouse...

Full description

Bibliographic Details
Main Authors: Opfergelt, Sophie, Hirst, Catherine, Monhonval, Arthur, Mauclet, Elisabeth, Thomas, Maxime, AGU FALL MEETING
Other Authors: UCL - SST/ELI/ELIE - Environmental Sciences
Format: Conference Object
Language:English
Published: 2020
Subjects:
Online Access:http://hdl.handle.net/2078.1/239968
id ftunivlouvain:oai:dial.uclouvain.be:boreal:239968
record_format openpolar
spelling ftunivlouvain:oai:dial.uclouvain.be:boreal:239968 2024-05-12T08:00:33+00:00 Why do we need to care about the evolution of mineral-organic carbon interactions in permafrost upon thawing? Opfergelt, Sophie Hirst, Catherine Monhonval, Arthur Mauclet, Elisabeth Thomas, Maxime AGU FALL MEETING UCL - SST/ELI/ELIE - Environmental Sciences 2020 http://hdl.handle.net/2078.1/239968 eng eng boreal:239968 http://hdl.handle.net/2078.1/239968 info:eu-repo/semantics/openAccess Alaska mineral-organic carbon permafrost info:eu-repo/semantics/conferenceObject 2020 ftunivlouvain 2024-04-17T16:42:12Z Evidence is mounting that permafrost thaw represents a tipping element in the Earth climate system due to permafrost carbon emissions. Yet uncertainties are associated with how this will unfold. Permafrost contains 1460-1600 Gt of organic carbon (OC), from which 15±3% could be emitted as greenhouse gases (GHG) by 2100. The evolution of mineral-organic interactions in permafrost upon thawing is a potentially an important player for the modulation of permafrost C emissions. Indeed, the interactions between OC and minerals influence the accessibility of OC for microbial decomposition and OC stability and are therefore a factor in controlling the permafrost C emissions rate upon thawing. Mineral protection of OC includes (i) physical protection, i.e., OC within soil aggregates spatially inaccessible for microorganisms, or (ii) physico-chemical protection, i.e., as organo-mineral associations (e.g., OC sorbed onto mineral surfaces) or as organo-metallic complexes (OC complexed with e.g., Al, Fe, Ca). Soil constituents are increasingly exposed to changing water saturation in response to permafrost thaw. Mineral solubility and metal ions binding OC are highly sensitive to changing conditions such as water saturation or soil acidity. This contribution aims at assessing the potential influence of changing from oxic to anoxic conditions or vice-versa for the evolution of mineral-OC interactions in thawing permafrost. Four scenarios of ongoing permafrost disturbances in a warming Arctic landscape will be discussed based on the current knowlegde: (i) active layer deepening by gradual thaw, (ii) abrupt thaw creating lakes and wetlands, (iii) lake basin drainage, (iv) coastal erosion. Anticipated effects are on (i) the availability of OC for microbial decomposition, and thereby amplifying or mitigating permafrost C emissions, and/or on (ii) the CO2 to CH4 ratio of C emissions, and hence affecting the resulting net global warming potential. Conference Object Arctic Global warming permafrost Alaska DIAL@UCLouvain (Université catholique de Louvain) Arctic
institution Open Polar
collection DIAL@UCLouvain (Université catholique de Louvain)
op_collection_id ftunivlouvain
language English
topic Alaska
mineral-organic carbon
permafrost
spellingShingle Alaska
mineral-organic carbon
permafrost
Opfergelt, Sophie
Hirst, Catherine
Monhonval, Arthur
Mauclet, Elisabeth
Thomas, Maxime
AGU FALL MEETING
Why do we need to care about the evolution of mineral-organic carbon interactions in permafrost upon thawing?
topic_facet Alaska
mineral-organic carbon
permafrost
description Evidence is mounting that permafrost thaw represents a tipping element in the Earth climate system due to permafrost carbon emissions. Yet uncertainties are associated with how this will unfold. Permafrost contains 1460-1600 Gt of organic carbon (OC), from which 15±3% could be emitted as greenhouse gases (GHG) by 2100. The evolution of mineral-organic interactions in permafrost upon thawing is a potentially an important player for the modulation of permafrost C emissions. Indeed, the interactions between OC and minerals influence the accessibility of OC for microbial decomposition and OC stability and are therefore a factor in controlling the permafrost C emissions rate upon thawing. Mineral protection of OC includes (i) physical protection, i.e., OC within soil aggregates spatially inaccessible for microorganisms, or (ii) physico-chemical protection, i.e., as organo-mineral associations (e.g., OC sorbed onto mineral surfaces) or as organo-metallic complexes (OC complexed with e.g., Al, Fe, Ca). Soil constituents are increasingly exposed to changing water saturation in response to permafrost thaw. Mineral solubility and metal ions binding OC are highly sensitive to changing conditions such as water saturation or soil acidity. This contribution aims at assessing the potential influence of changing from oxic to anoxic conditions or vice-versa for the evolution of mineral-OC interactions in thawing permafrost. Four scenarios of ongoing permafrost disturbances in a warming Arctic landscape will be discussed based on the current knowlegde: (i) active layer deepening by gradual thaw, (ii) abrupt thaw creating lakes and wetlands, (iii) lake basin drainage, (iv) coastal erosion. Anticipated effects are on (i) the availability of OC for microbial decomposition, and thereby amplifying or mitigating permafrost C emissions, and/or on (ii) the CO2 to CH4 ratio of C emissions, and hence affecting the resulting net global warming potential.
author2 UCL - SST/ELI/ELIE - Environmental Sciences
format Conference Object
author Opfergelt, Sophie
Hirst, Catherine
Monhonval, Arthur
Mauclet, Elisabeth
Thomas, Maxime
AGU FALL MEETING
author_facet Opfergelt, Sophie
Hirst, Catherine
Monhonval, Arthur
Mauclet, Elisabeth
Thomas, Maxime
AGU FALL MEETING
author_sort Opfergelt, Sophie
title Why do we need to care about the evolution of mineral-organic carbon interactions in permafrost upon thawing?
title_short Why do we need to care about the evolution of mineral-organic carbon interactions in permafrost upon thawing?
title_full Why do we need to care about the evolution of mineral-organic carbon interactions in permafrost upon thawing?
title_fullStr Why do we need to care about the evolution of mineral-organic carbon interactions in permafrost upon thawing?
title_full_unstemmed Why do we need to care about the evolution of mineral-organic carbon interactions in permafrost upon thawing?
title_sort why do we need to care about the evolution of mineral-organic carbon interactions in permafrost upon thawing?
publishDate 2020
url http://hdl.handle.net/2078.1/239968
geographic Arctic
geographic_facet Arctic
genre Arctic
Global warming
permafrost
Alaska
genre_facet Arctic
Global warming
permafrost
Alaska
op_relation boreal:239968
http://hdl.handle.net/2078.1/239968
op_rights info:eu-repo/semantics/openAccess
_version_ 1798842449311825920