Environmental controls on ecosystem-scale cold-season methane and carbon dioxide fluxes in an Arctic tundra ecosystem

Understanding the processes that influence and control carbon cycling in Arctic tundra ecosystems is essential for making accurate predictions about what role these ecosystems will play in potential future climate change scenarios. Particularly, air–surface fluxes of methane and carbon dioxide are...

Full description

Bibliographic Details
Published in:Biogeosciences
Main Authors: Howard, Dean, Agnan, Yannick, Helmig, Detlev, Yang, Yu, Obrist, Daniel
Other Authors: UCL - SST/ELI/ELIE - Environmental Sciences
Format: Article in Journal/Newspaper
Language:English
Published: 2020
Subjects:
Online Access:http://hdl.handle.net/2078.1/232173
https://doi.org/10.5194/bg-17-4025-2020
id ftunivlouvain:oai:dial.uclouvain.be:boreal:232173
record_format openpolar
spelling ftunivlouvain:oai:dial.uclouvain.be:boreal:232173 2024-05-12T07:59:04+00:00 Environmental controls on ecosystem-scale cold-season methane and carbon dioxide fluxes in an Arctic tundra ecosystem Howard, Dean Agnan, Yannick Helmig, Detlev Yang, Yu Obrist, Daniel UCL - SST/ELI/ELIE - Environmental Sciences 2020 http://hdl.handle.net/2078.1/232173 https://doi.org/10.5194/bg-17-4025-2020 eng eng boreal:232173 http://hdl.handle.net/2078.1/232173 doi:10.5194/bg-17-4025-2020 urn:EISSN:1726-4170 info:eu-repo/semantics/openAccess Biogeosciences, Vol. 17, no.1, p. 4025–4042 (2020) info:eu-repo/semantics/article 2020 ftunivlouvain https://doi.org/10.5194/bg-17-4025-2020 2024-04-17T16:43:53Z Understanding the processes that influence and control carbon cycling in Arctic tundra ecosystems is essential for making accurate predictions about what role these ecosystems will play in potential future climate change scenarios. Particularly, air–surface fluxes of methane and carbon dioxide are of interest as recent observations suggest that the vast stores of soil carbon found in the Arctic tundra are becoming more available to release to the atmosphere in the form of these greenhouse gases. Further, harsh wintertime conditions and complex logistics have limited the number of year-round and cold-season studies and hence too our understanding of carbon cycle processes during these periods. We present here a two-year micrometeorological data set of methane and carbon dioxide fluxes, along with supporting soil pore gas profiles, that provide near-continuous data throughout the active summer and cold winter seasons. Net emission of methane and carbon dioxide in one of the study years totalled 3.7 and 89 g C m−2 a−1 respectively, with cold-season methane emission representing 54 % of the annual total. In the other year, net emission totals of methane and carbon dioxide were 4.9 and 485 g C m−2 a−1 respectively, with cold-season methane emission here representing 82 % of the annual total – a larger proportion than has been previously reported in the Arctic tundra. Regression tree analysis suggests that, due to relatively warmer air temperatures and deeper snow depths, deeper soil horizons – where most microbial methanogenic activity takes place – remained warm enough to maintain efficient methane production whilst surface soil temperatures were simultaneously cold enough to limit microbial methanotrophic activity. These results provide valuable insight into how a changing Arctic climate may impact methane emission, and highlight a need to focus on soil temperatures throughout the entire active soil profile, rather than rely on air temperature as a proxy for modelling ... Article in Journal/Newspaper Arctic Climate change Tundra DIAL@UCLouvain (Université catholique de Louvain) Arctic Biogeosciences 17 15 4025 4042
institution Open Polar
collection DIAL@UCLouvain (Université catholique de Louvain)
op_collection_id ftunivlouvain
language English
description Understanding the processes that influence and control carbon cycling in Arctic tundra ecosystems is essential for making accurate predictions about what role these ecosystems will play in potential future climate change scenarios. Particularly, air–surface fluxes of methane and carbon dioxide are of interest as recent observations suggest that the vast stores of soil carbon found in the Arctic tundra are becoming more available to release to the atmosphere in the form of these greenhouse gases. Further, harsh wintertime conditions and complex logistics have limited the number of year-round and cold-season studies and hence too our understanding of carbon cycle processes during these periods. We present here a two-year micrometeorological data set of methane and carbon dioxide fluxes, along with supporting soil pore gas profiles, that provide near-continuous data throughout the active summer and cold winter seasons. Net emission of methane and carbon dioxide in one of the study years totalled 3.7 and 89 g C m−2 a−1 respectively, with cold-season methane emission representing 54 % of the annual total. In the other year, net emission totals of methane and carbon dioxide were 4.9 and 485 g C m−2 a−1 respectively, with cold-season methane emission here representing 82 % of the annual total – a larger proportion than has been previously reported in the Arctic tundra. Regression tree analysis suggests that, due to relatively warmer air temperatures and deeper snow depths, deeper soil horizons – where most microbial methanogenic activity takes place – remained warm enough to maintain efficient methane production whilst surface soil temperatures were simultaneously cold enough to limit microbial methanotrophic activity. These results provide valuable insight into how a changing Arctic climate may impact methane emission, and highlight a need to focus on soil temperatures throughout the entire active soil profile, rather than rely on air temperature as a proxy for modelling ...
author2 UCL - SST/ELI/ELIE - Environmental Sciences
format Article in Journal/Newspaper
author Howard, Dean
Agnan, Yannick
Helmig, Detlev
Yang, Yu
Obrist, Daniel
spellingShingle Howard, Dean
Agnan, Yannick
Helmig, Detlev
Yang, Yu
Obrist, Daniel
Environmental controls on ecosystem-scale cold-season methane and carbon dioxide fluxes in an Arctic tundra ecosystem
author_facet Howard, Dean
Agnan, Yannick
Helmig, Detlev
Yang, Yu
Obrist, Daniel
author_sort Howard, Dean
title Environmental controls on ecosystem-scale cold-season methane and carbon dioxide fluxes in an Arctic tundra ecosystem
title_short Environmental controls on ecosystem-scale cold-season methane and carbon dioxide fluxes in an Arctic tundra ecosystem
title_full Environmental controls on ecosystem-scale cold-season methane and carbon dioxide fluxes in an Arctic tundra ecosystem
title_fullStr Environmental controls on ecosystem-scale cold-season methane and carbon dioxide fluxes in an Arctic tundra ecosystem
title_full_unstemmed Environmental controls on ecosystem-scale cold-season methane and carbon dioxide fluxes in an Arctic tundra ecosystem
title_sort environmental controls on ecosystem-scale cold-season methane and carbon dioxide fluxes in an arctic tundra ecosystem
publishDate 2020
url http://hdl.handle.net/2078.1/232173
https://doi.org/10.5194/bg-17-4025-2020
geographic Arctic
geographic_facet Arctic
genre Arctic
Climate change
Tundra
genre_facet Arctic
Climate change
Tundra
op_source Biogeosciences, Vol. 17, no.1, p. 4025–4042 (2020)
op_relation boreal:232173
http://hdl.handle.net/2078.1/232173
doi:10.5194/bg-17-4025-2020
urn:EISSN:1726-4170
op_rights info:eu-repo/semantics/openAccess
op_doi https://doi.org/10.5194/bg-17-4025-2020
container_title Biogeosciences
container_volume 17
container_issue 15
container_start_page 4025
op_container_end_page 4042
_version_ 1798839959331799040