Chlorella, ¿un potencial biofertilizante?

Las microalgas son organismos fotoautótrofos con un rápido crecimiento y la habilidad de adaptarse a diversos ambientes. Convierten el dióxido de carbono en biomasa y debido a esto, se considera que tienen gran potencial biotecnológico. La biomasa algal puede usarse en la industria alimenticia y de...

Full description

Bibliographic Details
Published in:Orinoquia
Main Authors: Ortiz-Moreno, Martha L., Sandoval-Parra, Karen X., Solarte-Murillo, Laura V.
Format: Article in Journal/Newspaper
Language:Spanish
Published: Universidad de los Llanos 2019
Subjects:
Online Access:https://repositorio.unillanos.edu.co/handle/001/2740
https://doi.org/10.22579/20112629.582
id ftunivloslanos:oai:repositorio.unillanos.edu.co:001/2740
record_format openpolar
institution Open Polar
collection Repositorio Universidad de los Llanos
op_collection_id ftunivloslanos
language Spanish
topic pathological diagnosis
blackberry
pathogen
disease
Diagnostico
Mora de Castilla
Patógeno
enfermedades
spellingShingle pathological diagnosis
blackberry
pathogen
disease
Diagnostico
Mora de Castilla
Patógeno
enfermedades
Ortiz-Moreno, Martha L.
Sandoval-Parra, Karen X.
Solarte-Murillo, Laura V.
Chlorella, ¿un potencial biofertilizante?
topic_facet pathological diagnosis
blackberry
pathogen
disease
Diagnostico
Mora de Castilla
Patógeno
enfermedades
description Las microalgas son organismos fotoautótrofos con un rápido crecimiento y la habilidad de adaptarse a diversos ambientes. Convierten el dióxido de carbono en biomasa y debido a esto, se considera que tienen gran potencial biotecnológico. La biomasa algal puede usarse en la industria alimenticia y de compuestos bioactivos, en la producción de biocombustibles, en la bioremediación y biofertilización. Como biofertilizantes, las microalgas clorofitas y cianofitas, producen polisacáridos (mucílago) que pueden evitar la erosión, mejorar la estructura y el contenido de material orgánica de los suelos, y aumentar la concentración de iones en los cultivos. Reduciendo de esta forma la necesidad de fertilizantes químicos convencionales. El uso de estas microalgas como biofertilizantes se denomina algalización. Durante este proceso se usan principalmente clorofitas por su alta tasa de crecimiento, la facilidad de su cultivo a gran escala, y su adaptación a las condiciones del suelo. El género Chlorella es de gran interés porque diversos estudios han mostrado que puede ayudar en la fijación del nitrógeno, mejorar las propiedades físicas y químicas del suelo, y producir sustancias que promueven el desarrollo de la planta y el control de infecciones. Por esta razón, las microalgas del género Chlorella representan una alternativa viable para la biofertilización, generando beneficios no solo para la producción agrícola sino también para el medio ambiente. Microalgae are photoautotrophic organisms with fast growth and the ability to adapt to different environments. They convert carbon dioxide into biomass and are considered to have great biotechnological potential because of it. Algal biomass can be used in food and bioactive compounds industry, in biofuels production, in bioremediation and biofertilization. As biofertilizers, chlorophytes and cyanophytes microalgae produce polysaccharides (mucilage) that can avoid erosion, improve the structure and organic matter content in the soil, and increase the ions concentration for crop ...
format Article in Journal/Newspaper
author Ortiz-Moreno, Martha L.
Sandoval-Parra, Karen X.
Solarte-Murillo, Laura V.
author_facet Ortiz-Moreno, Martha L.
Sandoval-Parra, Karen X.
Solarte-Murillo, Laura V.
author_sort Ortiz-Moreno, Martha L.
title Chlorella, ¿un potencial biofertilizante?
title_short Chlorella, ¿un potencial biofertilizante?
title_full Chlorella, ¿un potencial biofertilizante?
title_fullStr Chlorella, ¿un potencial biofertilizante?
title_full_unstemmed Chlorella, ¿un potencial biofertilizante?
title_sort chlorella, ¿un potencial biofertilizante?
publisher Universidad de los Llanos
publishDate 2019
url https://repositorio.unillanos.edu.co/handle/001/2740
https://doi.org/10.22579/20112629.582
geographic Alta
geographic_facet Alta
genre Arctic
genre_facet Arctic
op_source https://orinoquia.unillanos.edu.co/index.php/orinoquia/article/view/582
op_relation Abd Elhafz A, Abd Elhafz A, Gaur SS, Hamdany N, Osman M, Lakshmi TVR. Recent Res Sci Technol. 2015;7:14-21.
Adessia A, De Carvalhoc RC, De Philippisa R, Branquinhoc C, Da Silva JM. Microbial extracellular polymeric substances improve water retention indryland biological soil crusts. Soil Biol Biochem. 2018;116:67-69.
Agwa OK, Ogugbue CJ, Williams EE. Field Evidence of Chlorella vulgaris potentials as a biofertilizer for Hibiscus esculentus. Int J Agric Res. 2017;12(4):181-189.
Al-Shakankery FM, Hamouda RA, Ammar MM. The promotive effect of different concentrations of marine algae as biofertilizers on growth and yield of maize (Zea mays L.) plants. J chem Biol Phys Sci. 2014; 4:43201-43211.
Antoninka A, Bowker MA, Reed SC, Doherty K. Production of greenhouse-grown biocrust mosses and associated cyanobacteria to rehabilitate dryland soil function: cultivating biocrust mosses. Restor Ecol. 2016;24:324-335. DOI:10.1111/rec.12311
Arce MI, Méndoza-Lera C, Almagro M, Catalán N, Romaní A, Martí E, Gómez R, et al. A conceptual framework for understanding the biogeochemistry of dry riverbeds through the lens of soil science. Earth-Sci Rev. 2019;188:441-453.
Awale R, Machado S, Ghimire R, Bista P. 2017. Soil Health. In: Yorgey G, Kruger C, (Editors). Advances in dryland farming in the Inland Pacifc Northwest. Washington State University. p. 47-98.
Baumann K, Glaser K, Mutz JE, Karsten U, Maclennan A, Hu Y, Michalikd D, et al. Biological soil crusts of temperate forests: Their role in P cycling. Soil Biol Biochem. 2017;109:156-166. DOI:10.1016/j.soilbio.2017.02.011
Beltrame A, Pascholati SF. Cianobactérias e algas reduzem os sintomas causados por Tobacco mosaic virus (TMV) em plantas de fumo. Summa Phytopathol. 2011;37(2):140-145.
Bileva T. Influence of green algae Chlorella vulgaris on infested Xiphinema index grape seedlings. J Earth Sci Clim Change. 2013;4:136-138.
Bleakley S, Hayes M. Algal proteins: extraction, application, and challenges concerning production. Foods. 2017;6:33.
Borchhardt N, Baum C, Mikhailyuk T, Karsten U. Biological soil crusts of Arctic Svalbard - Water availability as potential controlling factor for microalgal biodiversity. Front Microbiol. 2017;8:1485. DOI: 1485. DOI:10.3389/fmicb.2017.01485
Chacón TL. 2010. Efecto de la aplicación de soluciones de Chlorella vulgaris y Scenedesmus obliquus sobre el contenido de compuestos funcionales en germinados de brócoli (Brassica oleracea var itálica). Magister en diseño y gestión de procesos, Facultad de Ingeniería, Universidad de la Sabana, Bogotá DC, Colombia. 106 p.
Chamizo S, Rodríguez-Caballero E, Román JR, Cantón Y. Effects of biocrust on soil erosion and organic carbon losses under natural rainfall. Catena. 2016;148(2): 117-125. DOI:10.1016/j.catena.2016.06.017
Chen X, He G, Deng Z, Wang N, Jiang W, Chen S. Screening of microalgae for biodiesel feedstock. Adv Microbiol. 2014a;4:365-376.
Chen L, Rossi F, Deng S, Liu Y, Wang G, Adessi A, De Philippis R. Macromolecular and chemical features of the excreted extracellular polysaccharides in induced biological soil crusts of different ages. J Arid Environ. 2014b;67:521-527.
Cólica G, Li H, Rossi F, Li D, Liu Y, De Philippis R. Microbial secreted exopolysaccharides affect the hydrological behavior of induced biological soil crusts in desert sandy soils. Soil Biol Biochem. 2014;68:62-70. DOI:10.1016/j.soilbio.2013.09.017
Dineshkumar R, Kumaravel R, Gopalsamy J, Sikder MNA, Sampathkumar P. Microalgae as bio-fertilizers for rice growth and seed yield productivity. Waste Biomass Valor. 2018;9(5):793-800. DOI:10.1007/s12649-017-9873-5
Dineshkumar R, Subramanian J, Gopalsamy J, Jayasingam P, Arumugam A, Kannadasan S, Sampathkumar P. The impact of using microalgae as biofertilizer in maize (Zea mays L.). Waste Biomass Valor. 2017;8:1-10. DOI:10.1007/s12649-017-0123-7
Dubey A, Dubey DK. 2010. Evaluation of cost effective organic fertilizer. Organic eprints. http://orgprints.org/17043/1/17043.pdf (5 March, 2019).
Elarroussia H, Elmernissia N, Benhimaa R, Isam MEK, Najib B, Abedelaziz S, Imane W. Microalgae polysaccharides a promising plant growth biostimulant. J Algal Biomass Util. 2016;7:55-63.
El Modafar C, Elgadda M, El Boutachfaitib R, Abouraicha E, Zehhara N, Petit E, et al. Induction of natural defence accompanied by salicylic aciddependant systemic acquired resistance in tomato seedlings in response to bioelicitors isolated from green algae. Sci Hort. 2012;138:55-63. doi.org/10.1016/j.scienta.2012.02.011
El-Sheekh MM, Khairy HM, El-Shenody R. Algal production of extra and intra-cellular polysaccharides as an adaptive response to the toxin crude extract of Microcystis aeruginosa. Iranian J Environ Health Sci Eng. 2012;9(1):10. DOI:10.1186/1735-2746-9-10
Faheed FA, Fattah ZA. Effect of Chlorella vulgaris as bio-fertilizer on growth parameters and metabolic aspects of lettuce plant. J Agric Soc Sci. 2008;4:165-169.
Felde VJMNL, Chamizo S, Felix-Henningsen P, Drahorad SL. What stabilizes biological soil crusts in the Negev Desert?. Plant soil. 2018;429(1-2):9-18. DOI:10.1007/s11104-017-3459-7
Fischer T, Veste M, Bens O, Hüttl RF. Dew formation on the surface of biological soil crusts in central european sand ecosystems. Biogeosciences Discussions. 2012;9:8075-8092.
Ghiloufi W, Büdel B, Chaieb M. Effects of biological soil crusts on a mediterranean perennial grass (Stipatanacissima, L.). Plant Biosyst. 2016;151:158-167. DOI:10.1080/11263504.2015.1118165
Ghosh AK. Functions and bio-functions of soil and its restoration. IJRAR - Int J Res Anal Rev. 2018;5(3):672-677.
Grzzesik M, Romanowska-Duda Z. Improvements germination, growth, and metabolic activity of corn seedlings by grain conditioning and root application with cyanobacteria and microalgae. Pol J Environ Stud. 2014;23:1147-1153.
Grzzesik M, Romanowska-Duda Z. Ability of Cyanobacteria and green algae to improve metabolic activity and development of willow plants. Pol J Environ Stud. 2015;24(3): 1003-1012. DOI:10.15244/pjoes/34667
Grzzesik M, Romanowska-Duda Z, Kalaji HM. Effectiveness of cyanobacteria and green algae in enhancing the photosynthetic performance and growth of willow (Salix viminalis L.) plants under limited synthetic fertilizers application. Photosynthetica. 2017;55:510-521.
Hajimahmoodi M, Faramarzi MA, Mohammadi N, Soltani N, Oveisi MR, Nafissi-Varcheh N. Evaluation of antioxidant properties and total phenolic contents of some strains of microalgae. J Appl Phycol. 2010;22:43-50.
Hussain A, Hasnain S. Comparative assessment of the efficacy of bacterial and cyanobacterial phytohormones in plant tissue culture. World J Microbiol Biotechnol. 2012;28(4):1459-1466.
Hussain A, Krischke M, Roitsch T, Hasnain S. Rapid determination of cytokinins and auxins in cyanobacteria. Curr Microbiol. 2010;6(5)1:361-369.
Iyovo GD, Du G, Chen J. Sustainable biomethane, biofertilizer and biodiesel system from poultry waste. Indian J Sci Technol. 2010;3(10):1062-1069.
Kholssi R, Marks EAN, Miñón J, Montero O, Debdoubi A, Rad C. Biofertilizing efect of Chlorella sorokiniana suspensions on wheat growth. J Plant Growth Regul. 2018; 1-6. DOI:10.1007/s00344-018-9879-7
Kim MJ, Shim CK, Kim YK, Ko BG, Park JH, Hwang SG, Kim BH. Effect of biostimulator, Chlorella fusca on improving growth and qualities of chinese chives and spinach in organic farm. Plant Pathol J. 2018;34(6):567-574. DOI:10.5423/PPJ.FT.11.2018.0254
Kim MJ, Shim CK, Kim YK, Park JH, Hong SJ, Ji HJ, Han EJ, Yoon JC. Effect of Chlorella vulgaris CHK0008 fertilization on enhancement of storage and freshness in organic strawberry and leaf vegetables. Korean J Hortic Sci Technol. 2014;32:872-878.
Kumar D, Purakayastha TJ, Shivay YS. Long-term effect of organic manures and biofertilizers on physical and chemical properties of soil and productivity of rice-wheat system. International Journal of Bio-resource and Stress Management (IJBSM). 2015; 6(2):176-181. DOI:10.5958/0976-4038.2015.00030.5
Lan SB, Hu CX, Rao BQ, Wu L, Zhang DL, Liu YD. Non-rainfall water sources in the topsoil and their changes during formation of man-made algal crusts at the eastern edge of Qubqi Desert, Inner Mongolia. Sci China Life Sci. 2010;53:1135-1141.
Lan S, Zhang Q, Wu L, Liu Y, Zhang D, Hu C. Artificially accelerating the reversal of desertification: cyanobacterial inoculation facilitates the succession of vegetation communities. Environ Sci Technol. 2014;48:307-315. DOI:10.1021/es403785j
Lin CS, Chou TL, Wu JT. Biodiversity of soil algae in the farmlands of mid-taiwan. Bot Stud. 2013;54:41. DOI:10.1186/1999-3110-54-41
Liu J, Chen F. Biology and industrial applications of Chlorella: Advances and prospects. Adv Biochem Eng Biotechnol. 2016a;153:1-35.
Liu L, Pohnert G, Wei D. Extracellular metabolites from industrial microalgae and their biotechnological potential. Mar Drugs. 2016b;14(10):191. DOI:10.3390/md14100191
Mager DM. Carbohydrates in cyanobacterial soil crusts as a source of carbon in the Southwest Kalahari, Botswana. Soil Biol Biochem. 2010;42:313-318. DOI:10.1016/j.soilbio.2009.11.009
Mager DM, Thomas AD. Extracellular polysaccharides from cyanobacterial soil crusts: a review of their role in dryland soil processes. J Arid Environ. 2011;75:91-97.
Maqubela M, Mnkeni P, Malam Issa O, Pardo M, D’Acqui L. Nostoc cyanobacterial inoculation in South African agricultural soils enhances soil structure, fertility, and maize growth. Plant Soil. 2009;315:79-92.
Maqubela MP, Muchaonyerwa P, Mnkeni NS. Inoculation effects of two south african cyanobacteria strains on aggregate stability of a silt loam soil. Afr J Biotechnol. 2012;11:10726-10735.
Mohamed ZA. Polysaccharides as a protective response against microcystin-induced oxidative stress in Chlorella vulgaris and scenedesmus quadricauda and their possible significance in the aquatic ecosystem. Ecotoxicology. 2008;17(6): 504-516. DOI:10.1007/s10646-008-0204-2
Moreno-García L, Adjallé K, Barnabé S, Raghavan G. Microalgae biomass production for a biorefinery system: recent advances and the way towards sustainability. Renew Sust Energ Rev. 2017;76:493-506.
op_rights Orinoquia - 2020
https://creativecommons.org/licenses/by/4.0/
info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
op_rightsnorm CC-BY
op_doi https://doi.org/10.22579/20112629.582
https://doi.org/10.1111/rec.12311
https://doi.org/10.1016/j.soilbio.2017.02.011
https://doi.org/10.3389/fmicb.2017.01485
https://doi.org/10.1016/j.catena.2016.06.017
https://doi.org/10.1016/j.soilbio.2013.09
container_title Orinoquia
container_volume 23
container_issue 2
_version_ 1766302665665413120
spelling ftunivloslanos:oai:repositorio.unillanos.edu.co:001/2740 2023-05-15T14:28:30+02:00 Chlorella, ¿un potencial biofertilizante? Chlorella, a potential biofertilizer? Ortiz-Moreno, Martha L. Sandoval-Parra, Karen X. Solarte-Murillo, Laura V. 2019-12-16 00:00:00 application/pdf https://repositorio.unillanos.edu.co/handle/001/2740 https://doi.org/10.22579/20112629.582 spa spa Universidad de los Llanos Abd Elhafz A, Abd Elhafz A, Gaur SS, Hamdany N, Osman M, Lakshmi TVR. Recent Res Sci Technol. 2015;7:14-21. Adessia A, De Carvalhoc RC, De Philippisa R, Branquinhoc C, Da Silva JM. Microbial extracellular polymeric substances improve water retention indryland biological soil crusts. Soil Biol Biochem. 2018;116:67-69. Agwa OK, Ogugbue CJ, Williams EE. Field Evidence of Chlorella vulgaris potentials as a biofertilizer for Hibiscus esculentus. Int J Agric Res. 2017;12(4):181-189. Al-Shakankery FM, Hamouda RA, Ammar MM. The promotive effect of different concentrations of marine algae as biofertilizers on growth and yield of maize (Zea mays L.) plants. J chem Biol Phys Sci. 2014; 4:43201-43211. Antoninka A, Bowker MA, Reed SC, Doherty K. Production of greenhouse-grown biocrust mosses and associated cyanobacteria to rehabilitate dryland soil function: cultivating biocrust mosses. Restor Ecol. 2016;24:324-335. DOI:10.1111/rec.12311 Arce MI, Méndoza-Lera C, Almagro M, Catalán N, Romaní A, Martí E, Gómez R, et al. A conceptual framework for understanding the biogeochemistry of dry riverbeds through the lens of soil science. Earth-Sci Rev. 2019;188:441-453. Awale R, Machado S, Ghimire R, Bista P. 2017. Soil Health. In: Yorgey G, Kruger C, (Editors). Advances in dryland farming in the Inland Pacifc Northwest. Washington State University. p. 47-98. Baumann K, Glaser K, Mutz JE, Karsten U, Maclennan A, Hu Y, Michalikd D, et al. Biological soil crusts of temperate forests: Their role in P cycling. Soil Biol Biochem. 2017;109:156-166. DOI:10.1016/j.soilbio.2017.02.011 Beltrame A, Pascholati SF. Cianobactérias e algas reduzem os sintomas causados por Tobacco mosaic virus (TMV) em plantas de fumo. Summa Phytopathol. 2011;37(2):140-145. Bileva T. Influence of green algae Chlorella vulgaris on infested Xiphinema index grape seedlings. J Earth Sci Clim Change. 2013;4:136-138. Bleakley S, Hayes M. Algal proteins: extraction, application, and challenges concerning production. Foods. 2017;6:33. Borchhardt N, Baum C, Mikhailyuk T, Karsten U. Biological soil crusts of Arctic Svalbard - Water availability as potential controlling factor for microalgal biodiversity. Front Microbiol. 2017;8:1485. DOI: 1485. DOI:10.3389/fmicb.2017.01485 Chacón TL. 2010. Efecto de la aplicación de soluciones de Chlorella vulgaris y Scenedesmus obliquus sobre el contenido de compuestos funcionales en germinados de brócoli (Brassica oleracea var itálica). Magister en diseño y gestión de procesos, Facultad de Ingeniería, Universidad de la Sabana, Bogotá DC, Colombia. 106 p. Chamizo S, Rodríguez-Caballero E, Román JR, Cantón Y. Effects of biocrust on soil erosion and organic carbon losses under natural rainfall. Catena. 2016;148(2): 117-125. DOI:10.1016/j.catena.2016.06.017 Chen X, He G, Deng Z, Wang N, Jiang W, Chen S. Screening of microalgae for biodiesel feedstock. Adv Microbiol. 2014a;4:365-376. Chen L, Rossi F, Deng S, Liu Y, Wang G, Adessi A, De Philippis R. Macromolecular and chemical features of the excreted extracellular polysaccharides in induced biological soil crusts of different ages. J Arid Environ. 2014b;67:521-527. Cólica G, Li H, Rossi F, Li D, Liu Y, De Philippis R. Microbial secreted exopolysaccharides affect the hydrological behavior of induced biological soil crusts in desert sandy soils. Soil Biol Biochem. 2014;68:62-70. DOI:10.1016/j.soilbio.2013.09.017 Dineshkumar R, Kumaravel R, Gopalsamy J, Sikder MNA, Sampathkumar P. Microalgae as bio-fertilizers for rice growth and seed yield productivity. Waste Biomass Valor. 2018;9(5):793-800. DOI:10.1007/s12649-017-9873-5 Dineshkumar R, Subramanian J, Gopalsamy J, Jayasingam P, Arumugam A, Kannadasan S, Sampathkumar P. The impact of using microalgae as biofertilizer in maize (Zea mays L.). Waste Biomass Valor. 2017;8:1-10. DOI:10.1007/s12649-017-0123-7 Dubey A, Dubey DK. 2010. Evaluation of cost effective organic fertilizer. Organic eprints. http://orgprints.org/17043/1/17043.pdf (5 March, 2019). Elarroussia H, Elmernissia N, Benhimaa R, Isam MEK, Najib B, Abedelaziz S, Imane W. Microalgae polysaccharides a promising plant growth biostimulant. J Algal Biomass Util. 2016;7:55-63. El Modafar C, Elgadda M, El Boutachfaitib R, Abouraicha E, Zehhara N, Petit E, et al. Induction of natural defence accompanied by salicylic aciddependant systemic acquired resistance in tomato seedlings in response to bioelicitors isolated from green algae. Sci Hort. 2012;138:55-63. doi.org/10.1016/j.scienta.2012.02.011 El-Sheekh MM, Khairy HM, El-Shenody R. Algal production of extra and intra-cellular polysaccharides as an adaptive response to the toxin crude extract of Microcystis aeruginosa. Iranian J Environ Health Sci Eng. 2012;9(1):10. DOI:10.1186/1735-2746-9-10 Faheed FA, Fattah ZA. Effect of Chlorella vulgaris as bio-fertilizer on growth parameters and metabolic aspects of lettuce plant. J Agric Soc Sci. 2008;4:165-169. Felde VJMNL, Chamizo S, Felix-Henningsen P, Drahorad SL. What stabilizes biological soil crusts in the Negev Desert?. Plant soil. 2018;429(1-2):9-18. DOI:10.1007/s11104-017-3459-7 Fischer T, Veste M, Bens O, Hüttl RF. Dew formation on the surface of biological soil crusts in central european sand ecosystems. Biogeosciences Discussions. 2012;9:8075-8092. Ghiloufi W, Büdel B, Chaieb M. Effects of biological soil crusts on a mediterranean perennial grass (Stipatanacissima, L.). Plant Biosyst. 2016;151:158-167. DOI:10.1080/11263504.2015.1118165 Ghosh AK. Functions and bio-functions of soil and its restoration. IJRAR - Int J Res Anal Rev. 2018;5(3):672-677. Grzzesik M, Romanowska-Duda Z. Improvements germination, growth, and metabolic activity of corn seedlings by grain conditioning and root application with cyanobacteria and microalgae. Pol J Environ Stud. 2014;23:1147-1153. Grzzesik M, Romanowska-Duda Z. Ability of Cyanobacteria and green algae to improve metabolic activity and development of willow plants. Pol J Environ Stud. 2015;24(3): 1003-1012. DOI:10.15244/pjoes/34667 Grzzesik M, Romanowska-Duda Z, Kalaji HM. Effectiveness of cyanobacteria and green algae in enhancing the photosynthetic performance and growth of willow (Salix viminalis L.) plants under limited synthetic fertilizers application. Photosynthetica. 2017;55:510-521. Hajimahmoodi M, Faramarzi MA, Mohammadi N, Soltani N, Oveisi MR, Nafissi-Varcheh N. Evaluation of antioxidant properties and total phenolic contents of some strains of microalgae. J Appl Phycol. 2010;22:43-50. Hussain A, Hasnain S. Comparative assessment of the efficacy of bacterial and cyanobacterial phytohormones in plant tissue culture. World J Microbiol Biotechnol. 2012;28(4):1459-1466. Hussain A, Krischke M, Roitsch T, Hasnain S. Rapid determination of cytokinins and auxins in cyanobacteria. Curr Microbiol. 2010;6(5)1:361-369. Iyovo GD, Du G, Chen J. Sustainable biomethane, biofertilizer and biodiesel system from poultry waste. Indian J Sci Technol. 2010;3(10):1062-1069. Kholssi R, Marks EAN, Miñón J, Montero O, Debdoubi A, Rad C. Biofertilizing efect of Chlorella sorokiniana suspensions on wheat growth. J Plant Growth Regul. 2018; 1-6. DOI:10.1007/s00344-018-9879-7 Kim MJ, Shim CK, Kim YK, Ko BG, Park JH, Hwang SG, Kim BH. Effect of biostimulator, Chlorella fusca on improving growth and qualities of chinese chives and spinach in organic farm. Plant Pathol J. 2018;34(6):567-574. DOI:10.5423/PPJ.FT.11.2018.0254 Kim MJ, Shim CK, Kim YK, Park JH, Hong SJ, Ji HJ, Han EJ, Yoon JC. Effect of Chlorella vulgaris CHK0008 fertilization on enhancement of storage and freshness in organic strawberry and leaf vegetables. Korean J Hortic Sci Technol. 2014;32:872-878. Kumar D, Purakayastha TJ, Shivay YS. Long-term effect of organic manures and biofertilizers on physical and chemical properties of soil and productivity of rice-wheat system. International Journal of Bio-resource and Stress Management (IJBSM). 2015; 6(2):176-181. DOI:10.5958/0976-4038.2015.00030.5 Lan SB, Hu CX, Rao BQ, Wu L, Zhang DL, Liu YD. Non-rainfall water sources in the topsoil and their changes during formation of man-made algal crusts at the eastern edge of Qubqi Desert, Inner Mongolia. Sci China Life Sci. 2010;53:1135-1141. Lan S, Zhang Q, Wu L, Liu Y, Zhang D, Hu C. Artificially accelerating the reversal of desertification: cyanobacterial inoculation facilitates the succession of vegetation communities. Environ Sci Technol. 2014;48:307-315. DOI:10.1021/es403785j Lin CS, Chou TL, Wu JT. Biodiversity of soil algae in the farmlands of mid-taiwan. Bot Stud. 2013;54:41. DOI:10.1186/1999-3110-54-41 Liu J, Chen F. Biology and industrial applications of Chlorella: Advances and prospects. Adv Biochem Eng Biotechnol. 2016a;153:1-35. Liu L, Pohnert G, Wei D. Extracellular metabolites from industrial microalgae and their biotechnological potential. Mar Drugs. 2016b;14(10):191. DOI:10.3390/md14100191 Mager DM. Carbohydrates in cyanobacterial soil crusts as a source of carbon in the Southwest Kalahari, Botswana. Soil Biol Biochem. 2010;42:313-318. DOI:10.1016/j.soilbio.2009.11.009 Mager DM, Thomas AD. Extracellular polysaccharides from cyanobacterial soil crusts: a review of their role in dryland soil processes. J Arid Environ. 2011;75:91-97. Maqubela M, Mnkeni P, Malam Issa O, Pardo M, D’Acqui L. Nostoc cyanobacterial inoculation in South African agricultural soils enhances soil structure, fertility, and maize growth. Plant Soil. 2009;315:79-92. Maqubela MP, Muchaonyerwa P, Mnkeni NS. Inoculation effects of two south african cyanobacteria strains on aggregate stability of a silt loam soil. Afr J Biotechnol. 2012;11:10726-10735. Mohamed ZA. Polysaccharides as a protective response against microcystin-induced oxidative stress in Chlorella vulgaris and scenedesmus quadricauda and their possible significance in the aquatic ecosystem. Ecotoxicology. 2008;17(6): 504-516. DOI:10.1007/s10646-008-0204-2 Moreno-García L, Adjallé K, Barnabé S, Raghavan G. Microalgae biomass production for a biorefinery system: recent advances and the way towards sustainability. Renew Sust Energ Rev. 2017;76:493-506. Orinoquia - 2020 https://creativecommons.org/licenses/by/4.0/ info:eu-repo/semantics/openAccess http://purl.org/coar/access_right/c_abf2 CC-BY https://orinoquia.unillanos.edu.co/index.php/orinoquia/article/view/582 pathological diagnosis blackberry pathogen disease Diagnostico Mora de Castilla Patógeno enfermedades Artículo de revista Journal Article info:eu-repo/semantics/article Sección Ciencias agrarias Sección Agricultural sciences info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 Text http://purl.org/coar/version/c_970fb48d4fbd8a85 2019 ftunivloslanos https://doi.org/10.22579/20112629.582 https://doi.org/10.1111/rec.12311 https://doi.org/10.1016/j.soilbio.2017.02.011 https://doi.org/10.3389/fmicb.2017.01485 https://doi.org/10.1016/j.catena.2016.06.017 https://doi.org/10.1016/j.soilbio.2013.09 2022-06-19T17:58:22Z Las microalgas son organismos fotoautótrofos con un rápido crecimiento y la habilidad de adaptarse a diversos ambientes. Convierten el dióxido de carbono en biomasa y debido a esto, se considera que tienen gran potencial biotecnológico. La biomasa algal puede usarse en la industria alimenticia y de compuestos bioactivos, en la producción de biocombustibles, en la bioremediación y biofertilización. Como biofertilizantes, las microalgas clorofitas y cianofitas, producen polisacáridos (mucílago) que pueden evitar la erosión, mejorar la estructura y el contenido de material orgánica de los suelos, y aumentar la concentración de iones en los cultivos. Reduciendo de esta forma la necesidad de fertilizantes químicos convencionales. El uso de estas microalgas como biofertilizantes se denomina algalización. Durante este proceso se usan principalmente clorofitas por su alta tasa de crecimiento, la facilidad de su cultivo a gran escala, y su adaptación a las condiciones del suelo. El género Chlorella es de gran interés porque diversos estudios han mostrado que puede ayudar en la fijación del nitrógeno, mejorar las propiedades físicas y químicas del suelo, y producir sustancias que promueven el desarrollo de la planta y el control de infecciones. Por esta razón, las microalgas del género Chlorella representan una alternativa viable para la biofertilización, generando beneficios no solo para la producción agrícola sino también para el medio ambiente. Microalgae are photoautotrophic organisms with fast growth and the ability to adapt to different environments. They convert carbon dioxide into biomass and are considered to have great biotechnological potential because of it. Algal biomass can be used in food and bioactive compounds industry, in biofuels production, in bioremediation and biofertilization. As biofertilizers, chlorophytes and cyanophytes microalgae produce polysaccharides (mucilage) that can avoid erosion, improve the structure and organic matter content in the soil, and increase the ions concentration for crop ... Article in Journal/Newspaper Arctic Repositorio Universidad de los Llanos Alta Orinoquia 23 2