The Ins and Outs of Aquatic Mammal Tissue Culture Establishment for Colombian Species. A First-Time Approach

Cell cultures can be used as model systems of tissues, organs, or even entire animals for an almost unlimited quantity of tests, which can be done whenever necessary and under very precise and controlled conditions. Hence, aquatic mammals cell cultures can become a multifunctional instrument in the...

Full description

Bibliographic Details
Published in:Marine Environmental Research
Main Author: Baldrich Mora, Laura Mercedes
Format: Master Thesis
Language:English
Published: Universidad de los Andes 2022
Subjects:
Online Access:http://hdl.handle.net/1992/64400
id ftunivlosandes:oai:repositorio.uniandes.edu.co:1992/64400
record_format openpolar
institution Open Polar
collection Universidad de los Andes Colombia: Séneca
op_collection_id ftunivlosandes
language English
topic Primary cell culture
Aquatic mammals
Skin fibroblasts
Biología
spellingShingle Primary cell culture
Aquatic mammals
Skin fibroblasts
Biología
Baldrich Mora, Laura Mercedes
The Ins and Outs of Aquatic Mammal Tissue Culture Establishment for Colombian Species. A First-Time Approach
topic_facet Primary cell culture
Aquatic mammals
Skin fibroblasts
Biología
description Cell cultures can be used as model systems of tissues, organs, or even entire animals for an almost unlimited quantity of tests, which can be done whenever necessary and under very precise and controlled conditions. Hence, aquatic mammals cell cultures can become a multifunctional instrument in the study of whole animals (Boroda et al., 2020). Implementing, aquatic mammals cell culture banks in Colombia represents a huge opportunity to improve aquatic mammal investigation and conservation, opening doors for more directed research. In this study we aimed to stablish viable Colombian aquatic mammal cell cultures useful for future research based on a literature review. This methodology included sample collection, transport, sample processing, tissue cryopreservation and tissue culture establishment. Isolated cells from humpback whale (Megaptera novaeangliae), Amazon River dolphin (Inia geoffrensis) and Amazonian manatee (Trichechus inunguis) were obtained, and cell survival was observed but no confluency. Factors such as sample quality, transport duration, enzymatic digestion, among others, might have had a negative influence on the development of the cultures. In conclusion, aquatic mammals cell cultures were established but optimal cell growth was not observed. Further investigation is necessary to understand these possible interactions and improve the viability of the cultures, to be able to use them in the research and conservation of Colombian aquatic mammals. Facultad de Ciencias - Universidad de Los Andes Corporation Center of Excellence in Marine Sciences - CEMarin Magíster en Ciencias Biológicas Maestría Cultivos celulares primarios Conservación de mamíferos acuáticos
format Master Thesis
author Baldrich Mora, Laura Mercedes
author_facet Baldrich Mora, Laura Mercedes
author_sort Baldrich Mora, Laura Mercedes
title The Ins and Outs of Aquatic Mammal Tissue Culture Establishment for Colombian Species. A First-Time Approach
title_short The Ins and Outs of Aquatic Mammal Tissue Culture Establishment for Colombian Species. A First-Time Approach
title_full The Ins and Outs of Aquatic Mammal Tissue Culture Establishment for Colombian Species. A First-Time Approach
title_fullStr The Ins and Outs of Aquatic Mammal Tissue Culture Establishment for Colombian Species. A First-Time Approach
title_full_unstemmed The Ins and Outs of Aquatic Mammal Tissue Culture Establishment for Colombian Species. A First-Time Approach
title_sort ins and outs of aquatic mammal tissue culture establishment for colombian species. a first-time approach
publisher Universidad de los Andes
publishDate 2022
url http://hdl.handle.net/1992/64400
genre Humpback Whale
Megaptera novaeangliae
genre_facet Humpback Whale
Megaptera novaeangliae
op_relation Amphotericin B. (n.d.). Retrieved November 28, 2022, from https://www.thermofisher.com/order/catalog/product/15290018?SID=srch-hj-15290018
Animal Cell Culture Guide. (n.d.). www.atcc.org,
Boroda, A. V. (2017). Marine mammal cell cultures: To obtain, to apply, and to preserve. Marine Environmental Research, 129, 316-328. https://doi.org/10.1016/j.marenvres.2017.06.018
Boroda, A. v., Kipryushina, Y. O., Golochvastova, R. v., Shevchenko, O. G., Shulgina, M. A., Efimova, K. v., Katin, I. O., & Maiorova, M. A. (2020). Isolation, characterization, and ecotoxicological application of marine mammal skin fibroblast cultures. In Vitro Cellular and Developmental Biology - Animal, 56(9), 744-759. https://doi.org/10.1007/s11626-020-00506-w
Boroda, A. v., Zacharenko, P. G., Maiorova, M. A., Peterson, S. E., Loring, J. F., & Odintsova, N. A. (2015). The first steps towards generating induced pluripotent stem cells from cryopreserved skin biopsies of marine mammals. Russian Journal of Marine Biology 2015 41:5, 41(5), 405-408. https://doi.org/10.1134/S106307401505003X
Burkard, M., Bengtson Nash, S., Gambaro, G., Whitworth, D., & Schirmer, K. (2019). Lifetime extension of humpback whale skin fibroblasts and their response to lipopolysaccharide (LPS) and a mixture of 22 polychlorinated biphenyls (Aroclor). Cell Biology and Toxicology, 35(4), 387-398. https://doi.org/10.1007/S10565-018-09457-1
Burkard, M., Whitworth, D., Schirmer, K., & Nash, S. B. (2015). Establishment of the first humpback whale fibroblast cell lines and their application in chemical risk assessment. Aquatic Toxicology, 167, 240-247. https://doi.org/10.1016/j.aquatox.2015.08.005
Chen, H., Li, Y., & Tollefsbol, T. O. (2013). Cell senescence culturing methods. Methods in Molecular Biology, 1048, 1-10. https://doi.org/10.1007/978-1-62703-556-9_1
Chen, S. Y., Hayashida, Y., Chen, M. Y., Xie, H. T., & Tseng, S. C. G. (2011). A New Isolation Method of Human Limbal Progenitor Cells by Maintaining Close Association with Their Niche Cells. Tissue Engineering. Part C, Methods, 17(5), 537. https://doi.org/10.1089/TEN.TEC.2010.0609
Chen, T. L., Wise, S. S., Kraus, S., Shaffiey, F., Levine, K., Thompson, W. D., Romano, T., O'Hara, T., & Wise, J. P. (2009). Particulate hexavalent chromium is cytotoxic and genotoxic to the North Atlantic right whale (Eubalaena glacialis) lung and skin fibroblasts. Environmental and Molecular Mutagenesis, 50(5), 387-393. https://doi.org/10.1002/em.20471
Collagenase, Type I, powder. (n.d.). Retrieved November 28, 2022, from https://www.thermofisher.com/order/catalog/product/17018029?SID=srch-srp-17018029
de Magalhães, J. P., & Passos, J. F. (2018). Stress, cell senescence and organismal ageing. Mechanisms of Ageing and Development, 170, 2-9. https://doi.org/10.1016/J.MAD.2017.07.001
dos Santos, F. A. A., Carvalho, C. L., Almeida, I., Fagulha, T., Rammos, F., Barros, S. C., Henriques, M., Luís, T., & Duarte, M. D. (2021). Simple method for establishing primary leporidae skin fibroblast cultures. Cells, 10(8). https://doi.org/10.3390/cells10082100
Feltz, E. T., & Fay, F. H. (1966). Thermal requirements in vitro of epidermal cells from seals. Cryobiology, 3(3), 261-264. https://doi.org/10.1016/S0011-2240(66)80020-2
Fossi, M. C., Casini, S., Bucalossi, D., & Marsili, L. (2008). First detection of CYP1A1 and CYP2B induction in Mediterranean cetacean skin biopsies and cultured fibroblasts by Western blot analysis. Marine Environmental Research, 66(1), 3-6. https://doi.org/10.1016/J.MARENVRES.2008.02.006
Fossi, M. C., Casini, S., & Marsili, L. (2007). Potential toxicological hazard due to endocrine-disrupting chemicals on Mediterranean top predators: State of art, gender differences and methodological tools. Environmental Research, 104(1), 174-182. https://doi.org/10.1016/J.ENVRES.2006.06.014
Fossi, M. C., Marsili, L., Casini, S., & Bucalossi, D. (2006). Development of new-tools to investigate toxicological hazard due to endocrine disruptor organochlorines and emerging contaminants in Mediterranean cetaceans. Marine Environmental Research, 62(SUPPL. 1), S200-S204. https://doi.org/10.1016/J.MARENVRES.2006.04.063
Fossi, M. C., Marsili, L., Neri, G., Casini, S., Bearzi, G., Politi, E., Zanardelli, M., & Panigada, S. (2000). Skin biopsy of Mediterranean cetaceans for the investigation of interspecies susceptibility to xenobiotic contaminants. https://doi.org/https://doi.org/10.1016/S0141-1136(00)00127-6
Frouin, H., Lebeuf, M., Saint-Louis, R., Hammill, M., Pelletier, É., & Fournier, M. (2008). Toxic effects of tributyltin and its metabolites on harbour seal (Phoca vitulina) immune cells in vitro. Aquatic Toxicology, 90(3), 243-251. https://doi.org/10.1016/j.aquatox.2008.09.005
Gauthier, J. M., Dubeau, H., & Rassart, È. (1998). Mercury-induced micronuclei in skin fibroblasts of beluga whales. Environmental Toxicology and Chemistry, 17(12), 2487-2493. https://doi.org/10.1002/ETC.5620171215
Houck, M. L., Lear, T. L., & Charter, S. J. (2017). Animal cytogenetics. The AGT Cytogenetics Laboratory Manual, 1055-1102. https://doi.org/10.1002/9781119061199.ch24
Hsueh, Y. J., Huang, S. F., Lai, J. Y., Ma, S. C., Chen, H. C., Wu, S. E., Wang, T. K., Sun, C. C., Ma, K. S. K., Chen, J. K., Lai, C. H., & Ma, D. H. K. (2016). Preservation of epithelial progenitor cells from collagenase-digested oral mucosa during ex vivo cultivation. Scientific Reports, 6. https://doi.org/10.1038/srep36266
Hu, Z., Chen, Y., Gao, M., Chi, X., He, Y., Zhang, C., Yang, Y., Li, Y., Lv, Y., Huang, Y., & Deng, X. (2022). Novel strategy for primary epithelial cell isolation: Combination of hyaluronidase and collagenase I. Cell Proliferation. https://doi.org/10.1111/cpr.13320
Jin, W., Jia, K., Yang, L., Chen, J., Wu, Y., & Yi, M. (2013). Derivation and characterization of cell cultures from the skin of the Indo-Pacific humpback dolphin Sousa chinensis. In Vitro Cellular and Developmental Biology - Animal, 49(6), 449-457. https://doi.org/10.1007/s11626-013-9611-7
Lam, E. K., Allen, K. N., Torres-Velarde, J. M., & Vazquez-Medina, J. P. (2020). Functional studies with primary cells provide a system for genome-to-phenome investigations in marine mammals. Integrative and Comparative Biology, 60(2), 348-360. https://doi.org/10.1093/icb/icaa065
Lu, Y., Aguirre, A. A., Hamm, C., Wang, Y., Yu, Q., Loh, P. C., & Yanagihara, R. (2000). Establishment, cryopreservation, and growth of 11 cell lines prepared from a juvenile Hawaiian monk seal, Monachus schauinslandi. Methods in Cell Science 2000 22:2, 22(2), 115-124. https://doi.org/10.1023/A:1009816715383
Marsili, L., Fossi, M. C., Neri, G., Casini, S., Gardi, C., Palmeri, S., Tarquini, E., & Panigada, S. (2000). Skin biopsies for cell cultures from Mediterranean free-ranging cetaceans. https://doi.org/https://doi.org/10.1016/S0141-1136(00)00128-8
Marsili, L., Maltese, S., Coppola, D., Caliani, I., Carletti, L., Giannetti, M., Campani, T., Baini, M., Panti, C., Casini, S., & Cristina, M. (2012). Test Tube Cetaceans: From the Evaluation of Susceptibility to the Study of Genotoxic Effects of Different Environmental Contaminants Using Cetacean Fibroblast Cell Cultures. In New Approaches to the Study of Marine Mammals. InTech. https://doi.org/10.5772/54429
Martin, N. C., Pirie, A. A., Ford, L. v., Callaghan, C. L., McTurk, K., Lucy, D., & Scrimger, D. G. (2006). The use of phosphate buffered saline for the recovery of cells and spermatozoa from swabs. Science & Justice, 46(3), 179-184. https://doi.org/10.1016/S1355-0306(06)71591-X
Mathews, E. A., Keller, S., & Weiner, D. B. (1988). A method to collect and process skin biopsies for cell culture from free-ranging gray whales (Eschrichtius robustus). Marine Mammal Science, 4, 1-12.
Mollenhauer, M. A. M., Carter, B. J., Peden-Adams, M. M., Bossart, G. D., & Fair, P. A. (2009). Gene expression changes in bottlenose dolphin, Tursiops truncatus, skin cells following exposure to methylmercury (MeHg) or perfluorooctane sulfonate (PFOS). Aquatic Toxicology, 91(1), 10-18. https://doi.org/10.1016/J.AQUATOX.2008.09.013
Morin, P. A., Alexander, A., Blaxter, M., Caballero, S., Fedrigo, O., Fontaine, M. C., Foote, A. D., Kuraku, S., Maloney, B., McCarthy, M. L., McGowen, M. R., Mountcastle, J., Nery, M. F., Olsen, M. T., Rosel, P. E., & Jarvis, E. D. (2020). Building genomic infrastructure: Sequencing platinum-standard reference-quality genomes of all cetacean species. Marine Mammal Science, 36(4), 1356-1366. https://doi.org/10.1111/mms.12721
Mulukutla, B. C., Khan, S., Lange, A., & Hu, W. S. (2010). Glucose metabolism in mammalian cell culture: new insights for tweaking vintage pathways. Trends in Biotechnology, 28(9), 476-484. https://doi.org/10.1016/J.TIBTECH.2010.06.005
Narváez, D. M. (2020). Test de Micronúcleos (Cytokinesis Block Micronucleus assay: CBMN).
Ochiai, M., Kurihara, N., Hirano, M., Nakata, A., & Iwata, H. (2020). In Vitro Cytotoxicity and Risk Assessments of Environmental Pollutants Using Fibroblasts of a Stranded Finless Porpoise (Neophocaena asiaeorientalis). Environmental Science and Technology, 54(11), 6832-6841. https://doi.org/10.1021/acs.est.9b07471
PBS, pH 7.4. (n.d.). Retrieved November 28, 2022, from https://www.thermofisher.com/order/catalog/product/10010023
Penicillin-Streptomycin (10,000 U/mL). (n.d.). Retrieved November 28, 2022, from https://www.thermofisher.com/order/catalog/product/15140163?SID=srch-srp-15140163
Rajput, I. R., Xiao, Z., Yajing, S., Yaqoob, S., Sanganyado, E., Ying, H., Fei, Y., & Liu, W. (2018). Establishment of pantropic spotted dolphin (Stenella attenuata) fibroblast cell line and potential influence of polybrominated diphenyl ethers (PBDEs) on cytokines response. Aquatic Toxicology, 203(July), 1-9. https://doi.org/10.1016/j.aquatox.2018.07.017
Romaniuk, J. A. H., & Cegelski, L. (2015). Bacterial cell wall composition and the influence of antibiotics by cell-wall and whole-cell NMR. In Philosophical Transactions of the Royal Society B: Biological Sciences (Vol. 370, Issue 1679). Royal Society of London. https://doi.org/10.1098/rstb.2015.0024
Ryder, O. A., & Onuma, M. (2018). Viable Cell Culture Banking for Biodiversity Characterization and Conservation. Annual Review of Animal Biosciences, 6, 83-98. https://doi.org/10.1146/annurev-animal-030117-014556
San Diego Zoo Wildlife, A. (2021). Frozen Zoo. https://science.sandiegozoo.org/resources/frozen-zoo®
SiB, S. de información sobre B. en C. (2020). Biodiversidad en cifras. 1. https://cifras.biodiversidad.co/
Sodium Bicarbonate 7.5% solution. (n.d.). Retrieved November 28, 2022, from https://www.thermofisher.com/order/catalog/product/25080094
Spinsanti, G., Panti, C., Bucalossi, D., Marsili, L., Casini, S., Frati, F., & Fossi, M. C. (2008). Selection of reliable reference genes for qRT-PCR studies on cetacean fibroblast cultures exposed to OCs, 25 PBDEs, and 17beta-estradiol. Aquatic Toxicology, 87(3), 178-186. https://doi.org/10.1016/J.AQUATOX.2008.01.018
Strober, W. (2015). Trypan Blue Exclusion Test of Cell Viability. Current Protocols in Immunology, 111(1), A3.B.1-A3.B.3. https://doi.org/10.1002/0471142735.ima03bs111
Trujillo, F., Gärtner, A., Caicedo, D., & Diazgranados, Ma. C. (2013). Diagnóstico del estado de conocimiento y conservación de los mamíferos acuáticos en Colombia. In MINISTERIO DE AMBIENTE Y DESARROLLO SOSTENIBLE (Vol. 1, Issue 3).
Wang, J., Su, W., Nie, W., Wang, J., Xiao, W., & Wang, D. (2011). Establishment and characterization of fibroblast cell lines from the skin of the Yangtze finless porpoise. In Vitro Cellular & Developmental Biology - Animal 2011 47:9, 47(9), 618-630. https://doi.org/10.1007/S11626-011-9448-X
Wise, C. F., Wise, J. T. F., Wise, S. S., Thompson, W. D., Wise, J. P., & Wise, J. P. (2014). Chemical dispersants used in the Gulf of Mexico oil crisis are cytotoxic and genotoxic to sperm whale skin cells. Aquatic Toxicology, 152, 335-340. https://doi.org/10.1016/J.AQUATOX.2014.04.020
Wise, C. F., Wise, S. S., Thompson, W. D., Perkins, C., & Wise, J. P. (2015). Chromium Is Elevated in Fin Whale (Balaenoptera physalus) Skin Tissue and Is Genotoxic to Fin Whale Skin Cells. Biological Trace Element Research 2015 166:1, 166(1), 108-117. https://doi.org/10.1007/S12011-015-0311-X
Wise, J. P., Wise, S. S., Kraus, S., Shaffiey, F., Grau, M., Chen, T. L., Perkins, C., Thompson, W. D., Zheng, T., Zhang, Y., Romano, T., & O'Hara, T. (2008). Hexavalent chromium is cytotoxic and genotoxic to the North Atlantic right whale (Eubalaena glacialis) lung and testes fibroblasts. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 650(1), 30-38. https://doi.org/10.1016/J.MRGENTOX.2007.09.007
op_rights http://creativecommons.org/licenses/by-nc-nd/4.0/
info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
op_doi https://doi.org/10.1016/j.marenvres.2017.06.01810.1002/0471142735.ima03bs11110.1007/978-3-030-83696-2_3
container_title Marine Environmental Research
container_volume 129
container_start_page 316
op_container_end_page 328
_version_ 1767961213126311936
spelling ftunivlosandes:oai:repositorio.uniandes.edu.co:1992/64400 2023-06-06T11:54:41+02:00 The Ins and Outs of Aquatic Mammal Tissue Culture Establishment for Colombian Species. A First-Time Approach Baldrich Mora, Laura Mercedes 2022-12-14 27 páginas application/pdf http://hdl.handle.net/1992/64400 eng eng Universidad de los Andes Maestría en Ciencias Biológicas Facultad de Ciencias Departamento de Ciencias Biológicas Amphotericin B. (n.d.). Retrieved November 28, 2022, from https://www.thermofisher.com/order/catalog/product/15290018?SID=srch-hj-15290018 Animal Cell Culture Guide. (n.d.). www.atcc.org, Boroda, A. V. (2017). Marine mammal cell cultures: To obtain, to apply, and to preserve. Marine Environmental Research, 129, 316-328. https://doi.org/10.1016/j.marenvres.2017.06.018 Boroda, A. v., Kipryushina, Y. O., Golochvastova, R. v., Shevchenko, O. G., Shulgina, M. A., Efimova, K. v., Katin, I. O., & Maiorova, M. A. (2020). Isolation, characterization, and ecotoxicological application of marine mammal skin fibroblast cultures. In Vitro Cellular and Developmental Biology - Animal, 56(9), 744-759. https://doi.org/10.1007/s11626-020-00506-w Boroda, A. v., Zacharenko, P. G., Maiorova, M. A., Peterson, S. E., Loring, J. F., & Odintsova, N. A. (2015). The first steps towards generating induced pluripotent stem cells from cryopreserved skin biopsies of marine mammals. Russian Journal of Marine Biology 2015 41:5, 41(5), 405-408. https://doi.org/10.1134/S106307401505003X Burkard, M., Bengtson Nash, S., Gambaro, G., Whitworth, D., & Schirmer, K. (2019). Lifetime extension of humpback whale skin fibroblasts and their response to lipopolysaccharide (LPS) and a mixture of 22 polychlorinated biphenyls (Aroclor). Cell Biology and Toxicology, 35(4), 387-398. https://doi.org/10.1007/S10565-018-09457-1 Burkard, M., Whitworth, D., Schirmer, K., & Nash, S. B. (2015). Establishment of the first humpback whale fibroblast cell lines and their application in chemical risk assessment. Aquatic Toxicology, 167, 240-247. https://doi.org/10.1016/j.aquatox.2015.08.005 Chen, H., Li, Y., & Tollefsbol, T. O. (2013). Cell senescence culturing methods. Methods in Molecular Biology, 1048, 1-10. https://doi.org/10.1007/978-1-62703-556-9_1 Chen, S. Y., Hayashida, Y., Chen, M. Y., Xie, H. T., & Tseng, S. C. G. (2011). A New Isolation Method of Human Limbal Progenitor Cells by Maintaining Close Association with Their Niche Cells. Tissue Engineering. Part C, Methods, 17(5), 537. https://doi.org/10.1089/TEN.TEC.2010.0609 Chen, T. L., Wise, S. S., Kraus, S., Shaffiey, F., Levine, K., Thompson, W. D., Romano, T., O'Hara, T., & Wise, J. P. (2009). Particulate hexavalent chromium is cytotoxic and genotoxic to the North Atlantic right whale (Eubalaena glacialis) lung and skin fibroblasts. Environmental and Molecular Mutagenesis, 50(5), 387-393. https://doi.org/10.1002/em.20471 Collagenase, Type I, powder. (n.d.). Retrieved November 28, 2022, from https://www.thermofisher.com/order/catalog/product/17018029?SID=srch-srp-17018029 de Magalhães, J. P., & Passos, J. F. (2018). Stress, cell senescence and organismal ageing. Mechanisms of Ageing and Development, 170, 2-9. https://doi.org/10.1016/J.MAD.2017.07.001 dos Santos, F. A. A., Carvalho, C. L., Almeida, I., Fagulha, T., Rammos, F., Barros, S. C., Henriques, M., Luís, T., & Duarte, M. D. (2021). Simple method for establishing primary leporidae skin fibroblast cultures. Cells, 10(8). https://doi.org/10.3390/cells10082100 Feltz, E. T., & Fay, F. H. (1966). Thermal requirements in vitro of epidermal cells from seals. Cryobiology, 3(3), 261-264. https://doi.org/10.1016/S0011-2240(66)80020-2 Fossi, M. C., Casini, S., Bucalossi, D., & Marsili, L. (2008). First detection of CYP1A1 and CYP2B induction in Mediterranean cetacean skin biopsies and cultured fibroblasts by Western blot analysis. Marine Environmental Research, 66(1), 3-6. https://doi.org/10.1016/J.MARENVRES.2008.02.006 Fossi, M. C., Casini, S., & Marsili, L. (2007). Potential toxicological hazard due to endocrine-disrupting chemicals on Mediterranean top predators: State of art, gender differences and methodological tools. Environmental Research, 104(1), 174-182. https://doi.org/10.1016/J.ENVRES.2006.06.014 Fossi, M. C., Marsili, L., Casini, S., & Bucalossi, D. (2006). Development of new-tools to investigate toxicological hazard due to endocrine disruptor organochlorines and emerging contaminants in Mediterranean cetaceans. Marine Environmental Research, 62(SUPPL. 1), S200-S204. https://doi.org/10.1016/J.MARENVRES.2006.04.063 Fossi, M. C., Marsili, L., Neri, G., Casini, S., Bearzi, G., Politi, E., Zanardelli, M., & Panigada, S. (2000). Skin biopsy of Mediterranean cetaceans for the investigation of interspecies susceptibility to xenobiotic contaminants. https://doi.org/https://doi.org/10.1016/S0141-1136(00)00127-6 Frouin, H., Lebeuf, M., Saint-Louis, R., Hammill, M., Pelletier, É., & Fournier, M. (2008). Toxic effects of tributyltin and its metabolites on harbour seal (Phoca vitulina) immune cells in vitro. Aquatic Toxicology, 90(3), 243-251. https://doi.org/10.1016/j.aquatox.2008.09.005 Gauthier, J. M., Dubeau, H., & Rassart, È. (1998). Mercury-induced micronuclei in skin fibroblasts of beluga whales. Environmental Toxicology and Chemistry, 17(12), 2487-2493. https://doi.org/10.1002/ETC.5620171215 Houck, M. L., Lear, T. L., & Charter, S. J. (2017). Animal cytogenetics. The AGT Cytogenetics Laboratory Manual, 1055-1102. https://doi.org/10.1002/9781119061199.ch24 Hsueh, Y. J., Huang, S. F., Lai, J. Y., Ma, S. C., Chen, H. C., Wu, S. E., Wang, T. K., Sun, C. C., Ma, K. S. K., Chen, J. K., Lai, C. H., & Ma, D. H. K. (2016). Preservation of epithelial progenitor cells from collagenase-digested oral mucosa during ex vivo cultivation. Scientific Reports, 6. https://doi.org/10.1038/srep36266 Hu, Z., Chen, Y., Gao, M., Chi, X., He, Y., Zhang, C., Yang, Y., Li, Y., Lv, Y., Huang, Y., & Deng, X. (2022). Novel strategy for primary epithelial cell isolation: Combination of hyaluronidase and collagenase I. Cell Proliferation. https://doi.org/10.1111/cpr.13320 Jin, W., Jia, K., Yang, L., Chen, J., Wu, Y., & Yi, M. (2013). Derivation and characterization of cell cultures from the skin of the Indo-Pacific humpback dolphin Sousa chinensis. In Vitro Cellular and Developmental Biology - Animal, 49(6), 449-457. https://doi.org/10.1007/s11626-013-9611-7 Lam, E. K., Allen, K. N., Torres-Velarde, J. M., & Vazquez-Medina, J. P. (2020). Functional studies with primary cells provide a system for genome-to-phenome investigations in marine mammals. Integrative and Comparative Biology, 60(2), 348-360. https://doi.org/10.1093/icb/icaa065 Lu, Y., Aguirre, A. A., Hamm, C., Wang, Y., Yu, Q., Loh, P. C., & Yanagihara, R. (2000). Establishment, cryopreservation, and growth of 11 cell lines prepared from a juvenile Hawaiian monk seal, Monachus schauinslandi. Methods in Cell Science 2000 22:2, 22(2), 115-124. https://doi.org/10.1023/A:1009816715383 Marsili, L., Fossi, M. C., Neri, G., Casini, S., Gardi, C., Palmeri, S., Tarquini, E., & Panigada, S. (2000). Skin biopsies for cell cultures from Mediterranean free-ranging cetaceans. https://doi.org/https://doi.org/10.1016/S0141-1136(00)00128-8 Marsili, L., Maltese, S., Coppola, D., Caliani, I., Carletti, L., Giannetti, M., Campani, T., Baini, M., Panti, C., Casini, S., & Cristina, M. (2012). Test Tube Cetaceans: From the Evaluation of Susceptibility to the Study of Genotoxic Effects of Different Environmental Contaminants Using Cetacean Fibroblast Cell Cultures. In New Approaches to the Study of Marine Mammals. InTech. https://doi.org/10.5772/54429 Martin, N. C., Pirie, A. A., Ford, L. v., Callaghan, C. L., McTurk, K., Lucy, D., & Scrimger, D. G. (2006). The use of phosphate buffered saline for the recovery of cells and spermatozoa from swabs. Science & Justice, 46(3), 179-184. https://doi.org/10.1016/S1355-0306(06)71591-X Mathews, E. A., Keller, S., & Weiner, D. B. (1988). A method to collect and process skin biopsies for cell culture from free-ranging gray whales (Eschrichtius robustus). Marine Mammal Science, 4, 1-12. Mollenhauer, M. A. M., Carter, B. J., Peden-Adams, M. M., Bossart, G. D., & Fair, P. A. (2009). Gene expression changes in bottlenose dolphin, Tursiops truncatus, skin cells following exposure to methylmercury (MeHg) or perfluorooctane sulfonate (PFOS). Aquatic Toxicology, 91(1), 10-18. https://doi.org/10.1016/J.AQUATOX.2008.09.013 Morin, P. A., Alexander, A., Blaxter, M., Caballero, S., Fedrigo, O., Fontaine, M. C., Foote, A. D., Kuraku, S., Maloney, B., McCarthy, M. L., McGowen, M. R., Mountcastle, J., Nery, M. F., Olsen, M. T., Rosel, P. E., & Jarvis, E. D. (2020). Building genomic infrastructure: Sequencing platinum-standard reference-quality genomes of all cetacean species. Marine Mammal Science, 36(4), 1356-1366. https://doi.org/10.1111/mms.12721 Mulukutla, B. C., Khan, S., Lange, A., & Hu, W. S. (2010). Glucose metabolism in mammalian cell culture: new insights for tweaking vintage pathways. Trends in Biotechnology, 28(9), 476-484. https://doi.org/10.1016/J.TIBTECH.2010.06.005 Narváez, D. M. (2020). Test de Micronúcleos (Cytokinesis Block Micronucleus assay: CBMN). Ochiai, M., Kurihara, N., Hirano, M., Nakata, A., & Iwata, H. (2020). In Vitro Cytotoxicity and Risk Assessments of Environmental Pollutants Using Fibroblasts of a Stranded Finless Porpoise (Neophocaena asiaeorientalis). Environmental Science and Technology, 54(11), 6832-6841. https://doi.org/10.1021/acs.est.9b07471 PBS, pH 7.4. (n.d.). Retrieved November 28, 2022, from https://www.thermofisher.com/order/catalog/product/10010023 Penicillin-Streptomycin (10,000 U/mL). (n.d.). Retrieved November 28, 2022, from https://www.thermofisher.com/order/catalog/product/15140163?SID=srch-srp-15140163 Rajput, I. R., Xiao, Z., Yajing, S., Yaqoob, S., Sanganyado, E., Ying, H., Fei, Y., & Liu, W. (2018). Establishment of pantropic spotted dolphin (Stenella attenuata) fibroblast cell line and potential influence of polybrominated diphenyl ethers (PBDEs) on cytokines response. Aquatic Toxicology, 203(July), 1-9. https://doi.org/10.1016/j.aquatox.2018.07.017 Romaniuk, J. A. H., & Cegelski, L. (2015). Bacterial cell wall composition and the influence of antibiotics by cell-wall and whole-cell NMR. In Philosophical Transactions of the Royal Society B: Biological Sciences (Vol. 370, Issue 1679). Royal Society of London. https://doi.org/10.1098/rstb.2015.0024 Ryder, O. A., & Onuma, M. (2018). Viable Cell Culture Banking for Biodiversity Characterization and Conservation. Annual Review of Animal Biosciences, 6, 83-98. https://doi.org/10.1146/annurev-animal-030117-014556 San Diego Zoo Wildlife, A. (2021). Frozen Zoo. https://science.sandiegozoo.org/resources/frozen-zoo® SiB, S. de información sobre B. en C. (2020). Biodiversidad en cifras. 1. https://cifras.biodiversidad.co/ Sodium Bicarbonate 7.5% solution. (n.d.). Retrieved November 28, 2022, from https://www.thermofisher.com/order/catalog/product/25080094 Spinsanti, G., Panti, C., Bucalossi, D., Marsili, L., Casini, S., Frati, F., & Fossi, M. C. (2008). Selection of reliable reference genes for qRT-PCR studies on cetacean fibroblast cultures exposed to OCs, 25 PBDEs, and 17beta-estradiol. Aquatic Toxicology, 87(3), 178-186. https://doi.org/10.1016/J.AQUATOX.2008.01.018 Strober, W. (2015). Trypan Blue Exclusion Test of Cell Viability. Current Protocols in Immunology, 111(1), A3.B.1-A3.B.3. https://doi.org/10.1002/0471142735.ima03bs111 Trujillo, F., Gärtner, A., Caicedo, D., & Diazgranados, Ma. C. (2013). Diagnóstico del estado de conocimiento y conservación de los mamíferos acuáticos en Colombia. In MINISTERIO DE AMBIENTE Y DESARROLLO SOSTENIBLE (Vol. 1, Issue 3). Wang, J., Su, W., Nie, W., Wang, J., Xiao, W., & Wang, D. (2011). Establishment and characterization of fibroblast cell lines from the skin of the Yangtze finless porpoise. In Vitro Cellular & Developmental Biology - Animal 2011 47:9, 47(9), 618-630. https://doi.org/10.1007/S11626-011-9448-X Wise, C. F., Wise, J. T. F., Wise, S. S., Thompson, W. D., Wise, J. P., & Wise, J. P. (2014). Chemical dispersants used in the Gulf of Mexico oil crisis are cytotoxic and genotoxic to sperm whale skin cells. Aquatic Toxicology, 152, 335-340. https://doi.org/10.1016/J.AQUATOX.2014.04.020 Wise, C. F., Wise, S. S., Thompson, W. D., Perkins, C., & Wise, J. P. (2015). Chromium Is Elevated in Fin Whale (Balaenoptera physalus) Skin Tissue and Is Genotoxic to Fin Whale Skin Cells. Biological Trace Element Research 2015 166:1, 166(1), 108-117. https://doi.org/10.1007/S12011-015-0311-X Wise, J. P., Wise, S. S., Kraus, S., Shaffiey, F., Grau, M., Chen, T. L., Perkins, C., Thompson, W. D., Zheng, T., Zhang, Y., Romano, T., & O'Hara, T. (2008). Hexavalent chromium is cytotoxic and genotoxic to the North Atlantic right whale (Eubalaena glacialis) lung and testes fibroblasts. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 650(1), 30-38. https://doi.org/10.1016/J.MRGENTOX.2007.09.007 http://creativecommons.org/licenses/by-nc-nd/4.0/ info:eu-repo/semantics/openAccess http://purl.org/coar/access_right/c_abf2 Attribution-NonCommercial-NoDerivatives 4.0 Internacional Primary cell culture Aquatic mammals Skin fibroblasts Biología Trabajo de grado - Maestría info:eu-repo/semantics/masterThesis info:eu-repo/semantics/acceptedVersion http://purl.org/coar/resource_type/c_bdcc http://purl.org/coar/version/c_ab4af688f83e57aa Text https://purl.org/redcol/resource_type/TM 2022 ftunivlosandes https://doi.org/10.1016/j.marenvres.2017.06.01810.1002/0471142735.ima03bs11110.1007/978-3-030-83696-2_3 2023-04-14T07:56:48Z Cell cultures can be used as model systems of tissues, organs, or even entire animals for an almost unlimited quantity of tests, which can be done whenever necessary and under very precise and controlled conditions. Hence, aquatic mammals cell cultures can become a multifunctional instrument in the study of whole animals (Boroda et al., 2020). Implementing, aquatic mammals cell culture banks in Colombia represents a huge opportunity to improve aquatic mammal investigation and conservation, opening doors for more directed research. In this study we aimed to stablish viable Colombian aquatic mammal cell cultures useful for future research based on a literature review. This methodology included sample collection, transport, sample processing, tissue cryopreservation and tissue culture establishment. Isolated cells from humpback whale (Megaptera novaeangliae), Amazon River dolphin (Inia geoffrensis) and Amazonian manatee (Trichechus inunguis) were obtained, and cell survival was observed but no confluency. Factors such as sample quality, transport duration, enzymatic digestion, among others, might have had a negative influence on the development of the cultures. In conclusion, aquatic mammals cell cultures were established but optimal cell growth was not observed. Further investigation is necessary to understand these possible interactions and improve the viability of the cultures, to be able to use them in the research and conservation of Colombian aquatic mammals. Facultad de Ciencias - Universidad de Los Andes Corporation Center of Excellence in Marine Sciences - CEMarin Magíster en Ciencias Biológicas Maestría Cultivos celulares primarios Conservación de mamíferos acuáticos Master Thesis Humpback Whale Megaptera novaeangliae Universidad de los Andes Colombia: Séneca Marine Environmental Research 129 316 328