Identification of functional groups in páramo plants and evaluation of their susceptibility to global climate change

En este trabajo se realizó la clasificación funcional de especies de páramo y se determinó la capacidad de aclimatación térmica de la fotosíntesis y la respiración en los diferentes grupos funcionales, así como el efecto de la temperatura en su capacidad de germinación. Above treeline in the mountai...

Full description

Bibliographic Details
Published in:Ecology
Main Author: Cruz Aguilar, Marisol
Other Authors: Lasso De Paulis, Eloísa, González Arango, Catalina, Reich, Peter, Grupo de Ecología y Fisiología Vegetal
Format: Doctoral or Postdoctoral Thesis
Language:English
Published: Universidad de los Andes 2022
Subjects:
Online Access:http://hdl.handle.net/1992/59762
https://doi.org/10.57784/1992/59762
id ftunivlosandes:oai:repositorio.uniandes.edu.co:1992/59762
record_format openpolar
institution Open Polar
collection Repositorio institucional Séneca
op_collection_id ftunivlosandes
language English
topic Páramos
Northern Andes
Global climate change
Functional traits
Thermal acclimation
Seed germination
Biología
spellingShingle Páramos
Northern Andes
Global climate change
Functional traits
Thermal acclimation
Seed germination
Biología
Cruz Aguilar, Marisol
Identification of functional groups in páramo plants and evaluation of their susceptibility to global climate change
topic_facet Páramos
Northern Andes
Global climate change
Functional traits
Thermal acclimation
Seed germination
Biología
description En este trabajo se realizó la clasificación funcional de especies de páramo y se determinó la capacidad de aclimatación térmica de la fotosíntesis y la respiración en los diferentes grupos funcionales, así como el efecto de la temperatura en su capacidad de germinación. Above treeline in the mountains from the Northern Andes, there is an ecosystem of restricted distribution locally called as páramo. Páramos are tropical ecosystems of high altitude where there are special conditions that make them and their flora unique, such as greatly dynamic cloud conditions, excessive amounts of UV radiation, rapid changes of incident sunlight and pronounced temperature fluctuations during each day, among others. They are critical as a source of water in the region, are important carbon sinks, are home to a vast endemic flora, and possess some of the fastest rates of diversification in the world. Although the ecosystemic services of páramos depend to their high spatial abiotic and biotic heterogeneity that generates complex mosaics of plants associations; unfortunately, little work has been done on the susceptibility of páramo plants to climate change. Human-induced climate change is affecting all the Earth's biomes, including páramos, where models predict that temperatures will increase, while the volume and frequency of precipitation will decrease to the end of this century. All research indicates that warmer and drier environments will drive vegetation upward, as plants did in the past, during interglacial periods, rather than adapting to the new conditions. Plants can respond to climate change by adaptation, migration, or local extinction; adaptation implies that plants can acclimate its physiology to the new conditions, migration requires reproductive traits that favored dispersal and colonization of new areas, and it is well established, that species with limited ranges of distribution, such as those restricted to the páramo, have a higher risk of extinction. However, adaptation and migration capacities are not enough ...
author2 Lasso De Paulis, Eloísa
González Arango, Catalina
Reich, Peter
Grupo de Ecología y Fisiología Vegetal
format Doctoral or Postdoctoral Thesis
author Cruz Aguilar, Marisol
author_facet Cruz Aguilar, Marisol
author_sort Cruz Aguilar, Marisol
title Identification of functional groups in páramo plants and evaluation of their susceptibility to global climate change
title_short Identification of functional groups in páramo plants and evaluation of their susceptibility to global climate change
title_full Identification of functional groups in páramo plants and evaluation of their susceptibility to global climate change
title_fullStr Identification of functional groups in páramo plants and evaluation of their susceptibility to global climate change
title_full_unstemmed Identification of functional groups in páramo plants and evaluation of their susceptibility to global climate change
title_sort identification of functional groups in páramo plants and evaluation of their susceptibility to global climate change
publisher Universidad de los Andes
publishDate 2022
url http://hdl.handle.net/1992/59762
https://doi.org/10.57784/1992/59762
genre Arctic
genre_facet Arctic
op_relation Anderson, E. P., Marengo, J. A., Villalba, R., Halloy, S. R. P., Young, B. E., Cordero, D., Gast, F., Jaimes, E., & Ruiz, D. (2012). Consecuencias del cambio climático en los ecosistemas y servicios ecosistémicos de los Andes Tropicales. In S. K. Herzog, R. Martínez, P. M. Jørgensen, & H. Tiessen (Eds.), Climate change and Biodiversity in the Tropical Andes (p. 410). Inter-American Institute for Global Change Research (IAI) and Scientific Committee on Problems of the Environment (SCOPE).
Atkin, O. K., Holly, C., & Ball, M. C. (2000). Acclimation of snow gum (Eucalyptus pauciflora) leaf respiration to seasonal and diurnal variations in temperature: The importance of changes in the capacity and temperature sensitivity of respiration. Plant, Cell and Environment, 23(1), 15-26. https://doi.org/10.1046/j.1365-3040.2000.00511.x
Atkin, O. K., & Tjoelker, M. G. (2003). Thermal acclimation and the dynamic response of plant respiration to temperature. In Trends in Plant Science (Vol. 8, Issue 7, pp. 343-351). Elsevier Current Trends. https://doi.org/10.1016/S1360-1385(03)00136-5
Azócar, A., Rada, F., & García-Núñez, C. (2000). Aspectos ecofisiológicos para la conservación de ecosistemas tropicales contrastantes. Boletín de La Sociedad Botánica de México, 65, 6.
Baruch, Z. (1979). Elevation Differentiation in Espeletia Schultzii (Compositae), A Giant Rosette Plant of the Venezuelan Paramos. Ecology, 60(1), 85-98. https://doi.org/10.2307/1936471
Baruch, Z., & Smith, A. P. (1979). Morphological and physiological correlates of niche breadth in two species of Espeletia (Compositae) in the Venezuelan Andes. Oecologia, 38(1), 71-82. https://doi.org/10.1007/BF00347825
Baskin, C. C., & Baskin, J. M. (1998). Seeds: Ecology, biogeography, and, evolution of dormancy and germination. Elsevier.
Berry, J., & Bjorkman, O. (1980). Photosynthetic Response and Adaptation to Temperature in Higher Plants. Annual Review of Plant Physiology, 31(1), 491-543. https://doi.org/10.1146/annurev.pp.31.060180.002423
Billings, W. D. (1973). Arctic and Alpine Vegetations: Similarities, Differences, and Susceptibility to Disturbance. BioScience, 23(12), 697-704. https://doi.org/10.2307/1296827
Bolstad, Mitchell, & Vose. (1999). Foliar temperature-respiration response functions for broad-leaved tree species in the southern Appalachians. Tree Physiology, 19(13), 871-878.
Buytaert, W., Célleri, R., De Bièvre, B., Cisneros, F., Wyseure, G., Deckers, J., & Hofstede, R. (2006). Human impact on the hydrology of the Andean páramos. Earth-Science Reviews, 79(1-2), 53-72. http://dx.doi.org/10.1016/j.earscirev.2006.06.002
Buytaert, W., Deckers, J., & Wyseure, G. (2006). Description and classification of nonallophanic Andosols in south Ecuadorian alpine grasslands (páramo). Geomorphology, 73(3-4), 207-221. http://dx.doi.org/10.1016/j.geomorph.2005.06.012
Buytaert, W., Iñiguez, V., & Bièvre, B. De. (2007). The effects of afforestation and cultivation on water yield in the Andean páramo. Forest Ecology and Management, 251(1-2), 22-30. http://dx.doi.org/10.1016/j.foreco.2007.06.035
Buytaert, W., Sevink, J., De Leeuw, B., & Deckers, J. (2005). Clay mineralogy of the soils in the south Ecuadorian páramo region. Geoderma, 127(1-2), 114-129. https://doi.org/10.1016/j.geoderma.2004.11.021
Campbell, C., Atkinson, L., Zaragoza-Castells, J., Lundmark, M., Atkin, O., & Hurry, V. (2007). Acclimation of photosynthesis and respiration is asynchronous in response to changes in temperature regardless of plant functional group. New Phytologist, 176(2), 375-389. https://doi.org/10.1111/j.1469-8137.2007.02183.x
Cárdenas, C., Posada, C., & Vargas, O. (2002). Banco de semillas germinable de una comunidad vegetal de paramo húmedo sometida a quema y pastoreo (Parque Nacional Natural Chingaza, Colombia). Ecotropicos, 15(1), 51-60.
Castaño-Uribe, C. (2002). Colombia alto andina y la significancia ambiental del bioma páramo en el contexto de los andes tropicales: Una aproximación a los efectos futuros por el cambio climático global (Global Climatic Tensor). In C. Castaño-Uribe (Ed.), Aproximación al efecto del Global Climatic Tensor en el Bioma Páramo (p. 387). IDEAM.
Cortés, A. J., Garzón, L. N., Valencia, J. B., & Madriñán, S. (2018). On the Causes of Rapid Diversification in the Páramos: Isolation by Ecology and Genomic Divergence in Espeletia. Frontiers in Plant Science, 9, 1700. https://doi.org/10.3389/fpls.2018.01700
Cuesta F., Muriel P., Beck S., Meneses R.I., Halloy S., Salgado S, Ortiz E, B. M. T. (2012). Biodiversidad y Cambio Climático en los Andes Tropicales Conformación de una red de investigación para monitorear sus impactos y delinear acciones de adaptación (B. M. T. Cuesta Francisco, Muriel P., Beck S., Meneses R.I., Halloy S., Salgado S, Ortiz E, Ed.). Red Gloria-Andes.
Curiel-Yuste, J., Here¿, A. M., Ojeda, G., Paz, A., Pizano, C., García-Angulo, D., & Lasso, E. (2017). Soil heterotrophic CO2 emissions from tropical high-elevation ecosystems (Páramos) and their sensitivity to temperature and moisture fluctuations. Soil Biology and Biochemistry. https://doi.org/10.1016/j.soilbio.2017.02.016
Debouza, N. E., Babu Thruppoyil, S., Gopi, K., Zain, S., & Ksiksi, T. (2021). Plant and seed germination responses to global change, with a focus on CO2: A review. One Ecosystem. https://doi.org/10.3897/oneeco.6.e74260
Díaz, S., Purvis, A., Cornelissen, J. H. C., Mace, G. M., Donoghue, M. J., Ewers, R. M., Jordano, P., & Pearse, W. D. (2013). Functional traits, the phylogeny of function, and ecosystem service vulnerability. Ecology and Evolution, 3(9), 2958-2975. https://doi.org/10.1002/ece3.601
Dirnböck, T., Dullinger, S., & Grabherr, G. (2003). A regional impact assessment of climate and land-use change on alpine vegetation. Journal of Biogeography, 30(3), 401-417. https://doi.org/10.1046/j.1365-2699.2003.00839.x
Dormann S. J. Woodin, C. F. (2002). Climate change in the Arctic: Using plant functional types in a meta-analysis of field experiments. Functional Ecology, 16(1), 4-17.
Doughty, C. E., & Goulden, M. L. (2008). Are tropical forests near a high temperature threshold Journal of Geophysical Research: Biogeosciences, 113(G1). https://doi.org/10.1029/2007JG000632
Estrada, C., & Monasterio, M. (1988). Ecología poblacional de una roseta gigante, Espeletia spicata Sch. Bip. (Compositae), del páramo desértico. Ecotropicos, 1, 25-39.
Fagua, J. C., & González, V. H. (2007). Growth rates, reproductive phenology, and pollination ecology of Espeletia grandiflora (Asteraceae), a giant andean caulescent rosette. Plant Biology, 9(1), 127-135.
Farquhar, G. D., von Caemmerer, S., & Berry, J. A. (1980). A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta, 149(1), 78-90. https://doi.org/10.1007/BF00386231
Frantzen, N. M. L. H. F., & Bouman, F. (1989). Dispersal and growth form patterns of some zonal páramo vegetation types. 38(4), 449-465.
Funk, J. L., Larson, J. E., Ames, G. M., Butterfield, B. J., Cavender-Bares, J., Firn, J., Laughlin, D. C., Sutton-Grier, A. E., Williams, L., & Wright, J. (2017). Revisiting the Holy Grail: Using plant functional traits to understand ecological processes. Biological Reviews, 92(2), 1156-1173. https://doi.org/10.1111/brv.12275
Gauthier, P. P. G., Crous, K. Y., Ayub, G., Duan, H., Weerasinghe, L. K., Ellsworth, D. S., Tjoelker, M. G., Evans, J. R., Tissue, D. T., & Atkin, O. K. (2014). Drought increases heat tolerance of leaf respiration in Eucalyptus globulus saplings grown under both ambient and elevated atmospheric [CO2] and temperature. Journal of Experimental Botany, 65(22), 6471-6485. https://doi.org/10.1093/jxb/eru367
Goldstein, G., & Meinzer, F. (1983). Influence of insulating dead leaves and low temperatures on water balance in an Andean giant rosette plant. Plant, Cell and Environment, 6(8), 649-656. https://doi.org/10.1111/1365-3040.ep11589230
Goldstein, G., Meinzer, F., & Monasterio, M. (1984). The role of capacitance in the water balance of Andean giant rosette species. Plant, Cell and Environment, 7(3), 179-186. https://doi.org/10.1111/1365-3040.ep11614612
Guariguata, M. R., & Azocar, A. (1988). Seed Bank Dynamics and Germination Ecology in Espeletia timotensis (Compositae), an Andean Giant Rosette. Biotropica, 20(1), 54-59. JSTOR. https://doi.org/10.2307/2388426
Gunderson, C. A., O'hara, K. H., Campion, C. M., Walker, A. V., & Edwards, N. T. (2010). Thermal plasticity of photosynthesis: The role of acclimation in forest responses to a warming climate. Global Change Biology, 16(8), 2272-2286. https://doi.org/10.1111/j.1365-2486.2009.02090.x
Hedberg, O. (1964). Features of Afroalpine Plant Ecology. Acta Phytogeographica Suecica 49, 150.
Hikosaka, K., Ishikawa, K., Borjigidai, A., Muller, O., & Onoda, Y. (2006). Temperature acclimation of photosynthesis: Mechanisms involved in the changes in temperature dependence of photosynthetic rate. Journal of Experimental Botany, 57(2), 291-302.
Hofstede, R. (2002). El manejo del páramo como ecosistema estratégico. In Los Páramos Andinos: Los desafios del Siglo XXI (Vol. 74, Issue 17 2, pp. 5-41).
Hofstede, R., Calles, J., López, V., Polanco, R., Torres, F., Ulloa, J., Vásquez, A., & Cerra, M. (2014). Los páramos andinos ¿Qué sabemos? Estado de conocimiento sobre el impacto del cambio climático en el ecosistema páramo. UICN.
Hofstede, R. G. M. (1995). The effects of grazing and burning on soil and plant nutrient concentrations in Colombian páramo grasslands. Plant and Soil, 173(1), 111-132. https://doi.org/10.1007/BF00155524
Hughes, L. (2000). Biological consequences of global warming: Is the signal already apparent In Trends in Ecology and Evolution. https://doi.org/10.1016/S0169-5347(99)01764-4
IPCC. (2021). Climate Change 2021: Impacts, Adaptation, and Vulnerability. A Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change.
Ives, A. R., & Carpenter, S. R. (2007). Stability and Diversity of Ecosystems. Science, 317(5834), 58-62. https://doi.org/10.1126/science.1133258
Janzen, D. H. (1967). Why Mountain Passes are Higher in the Tropics. In The American Naturalist (Vol. 101, Issue 919, pp. 233-249). https://doi.org/10.1086/282487
Kappelle, M., Lovejoy, T. E., & Gámez Lobo, R. (2016). Costa Rican Ecosystems. University of Chicago Press. https://doi.org/10.7208/chicago/9780226121642.001.0001
Kattge, J., & Knorr, W. (2007). Temperature acclimation in a biochemical model of photosynthesis: A reanalysis of data from 36 species. Plant, Cell and Environment, 30(9), 1176-1190. https://doi.org/10.1111/j.1365-3040.2007.01690.x
Körner, C. (2003). Alpine Plant Life: Functional Plant Ecology of High Mountain Ecosystems. In Alpine Plant Life, 2nd Edn. https://doi.org/10.1007/978-3-642-18970-8
Llambí, L., & Rada, F. (2019). Ecological research in the tropical alpine ecosystems of the Venezuelan páramo: Past, present and future. Plant Ecology & Diversity, 1-20. https://doi.org/10.1080/17550874.2019.1680762
Laporte, M. A., Mougenot, I., & Garnier, E. (2012). ThesauForm-Traits: A web based collaborative tool to develop a thesaurus for plant functional diversity research. Ecological Informatics, 11, 34-44. https://doi.org/10.1016/j.ecoinf.2012.04.004
Laughlin, D. C. (2014). The intrinsic dimensionality of plant traits and its relevance to community assembly. Journal of Ecology, 102(1), 186-193. https://doi.org/10.1111/1365-2745.12187
op_rights Attribution-NonCommercial-NoDerivatives 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
op_doi https://doi.org/10.57784/1992/5976210.2307/193647110.2307/129682710.1007/BF0015552410.1016/S0169-5347(99)01764-410.1086/28248710.1007/978-3-642-18970-810.1111/1365-2745.1218710.1111/j.1558-5646.1974.tb00799.x10.2307/298967010.2307/238817110.2307/2259244
container_title Ecology
container_volume 60
container_issue 1
container_start_page 85
op_container_end_page 98
_version_ 1811634045639983104
spelling ftunivlosandes:oai:repositorio.uniandes.edu.co:1992/59762 2024-09-30T14:28:18+00:00 Identification of functional groups in páramo plants and evaluation of their susceptibility to global climate change Identificación de grupos funcionales en plantas de páramo y evaluación de su susceptibilidad al cambio climático global Cruz Aguilar, Marisol Lasso De Paulis, Eloísa González Arango, Catalina Reich, Peter Grupo de Ecología y Fisiología Vegetal 2022-06-08 99 páginas application/pdf http://hdl.handle.net/1992/59762 https://doi.org/10.57784/1992/59762 eng eng Universidad de los Andes Doctorado en Ciencias - Biología Facultad de Ciencias Departamento de Ciencias Biológicas Anderson, E. P., Marengo, J. A., Villalba, R., Halloy, S. R. P., Young, B. E., Cordero, D., Gast, F., Jaimes, E., & Ruiz, D. (2012). Consecuencias del cambio climático en los ecosistemas y servicios ecosistémicos de los Andes Tropicales. In S. K. Herzog, R. Martínez, P. M. Jørgensen, & H. Tiessen (Eds.), Climate change and Biodiversity in the Tropical Andes (p. 410). Inter-American Institute for Global Change Research (IAI) and Scientific Committee on Problems of the Environment (SCOPE). Atkin, O. K., Holly, C., & Ball, M. C. (2000). Acclimation of snow gum (Eucalyptus pauciflora) leaf respiration to seasonal and diurnal variations in temperature: The importance of changes in the capacity and temperature sensitivity of respiration. Plant, Cell and Environment, 23(1), 15-26. https://doi.org/10.1046/j.1365-3040.2000.00511.x Atkin, O. K., & Tjoelker, M. G. (2003). Thermal acclimation and the dynamic response of plant respiration to temperature. In Trends in Plant Science (Vol. 8, Issue 7, pp. 343-351). Elsevier Current Trends. https://doi.org/10.1016/S1360-1385(03)00136-5 Azócar, A., Rada, F., & García-Núñez, C. (2000). Aspectos ecofisiológicos para la conservación de ecosistemas tropicales contrastantes. Boletín de La Sociedad Botánica de México, 65, 6. Baruch, Z. (1979). Elevation Differentiation in Espeletia Schultzii (Compositae), A Giant Rosette Plant of the Venezuelan Paramos. Ecology, 60(1), 85-98. https://doi.org/10.2307/1936471 Baruch, Z., & Smith, A. P. (1979). Morphological and physiological correlates of niche breadth in two species of Espeletia (Compositae) in the Venezuelan Andes. Oecologia, 38(1), 71-82. https://doi.org/10.1007/BF00347825 Baskin, C. C., & Baskin, J. M. (1998). Seeds: Ecology, biogeography, and, evolution of dormancy and germination. Elsevier. Berry, J., & Bjorkman, O. (1980). Photosynthetic Response and Adaptation to Temperature in Higher Plants. Annual Review of Plant Physiology, 31(1), 491-543. https://doi.org/10.1146/annurev.pp.31.060180.002423 Billings, W. D. (1973). Arctic and Alpine Vegetations: Similarities, Differences, and Susceptibility to Disturbance. BioScience, 23(12), 697-704. https://doi.org/10.2307/1296827 Bolstad, Mitchell, & Vose. (1999). Foliar temperature-respiration response functions for broad-leaved tree species in the southern Appalachians. Tree Physiology, 19(13), 871-878. Buytaert, W., Célleri, R., De Bièvre, B., Cisneros, F., Wyseure, G., Deckers, J., & Hofstede, R. (2006). Human impact on the hydrology of the Andean páramos. Earth-Science Reviews, 79(1-2), 53-72. http://dx.doi.org/10.1016/j.earscirev.2006.06.002 Buytaert, W., Deckers, J., & Wyseure, G. (2006). Description and classification of nonallophanic Andosols in south Ecuadorian alpine grasslands (páramo). Geomorphology, 73(3-4), 207-221. http://dx.doi.org/10.1016/j.geomorph.2005.06.012 Buytaert, W., Iñiguez, V., & Bièvre, B. De. (2007). The effects of afforestation and cultivation on water yield in the Andean páramo. Forest Ecology and Management, 251(1-2), 22-30. http://dx.doi.org/10.1016/j.foreco.2007.06.035 Buytaert, W., Sevink, J., De Leeuw, B., & Deckers, J. (2005). Clay mineralogy of the soils in the south Ecuadorian páramo region. Geoderma, 127(1-2), 114-129. https://doi.org/10.1016/j.geoderma.2004.11.021 Campbell, C., Atkinson, L., Zaragoza-Castells, J., Lundmark, M., Atkin, O., & Hurry, V. (2007). Acclimation of photosynthesis and respiration is asynchronous in response to changes in temperature regardless of plant functional group. New Phytologist, 176(2), 375-389. https://doi.org/10.1111/j.1469-8137.2007.02183.x Cárdenas, C., Posada, C., & Vargas, O. (2002). Banco de semillas germinable de una comunidad vegetal de paramo húmedo sometida a quema y pastoreo (Parque Nacional Natural Chingaza, Colombia). Ecotropicos, 15(1), 51-60. Castaño-Uribe, C. (2002). Colombia alto andina y la significancia ambiental del bioma páramo en el contexto de los andes tropicales: Una aproximación a los efectos futuros por el cambio climático global (Global Climatic Tensor). In C. Castaño-Uribe (Ed.), Aproximación al efecto del Global Climatic Tensor en el Bioma Páramo (p. 387). IDEAM. Cortés, A. J., Garzón, L. N., Valencia, J. B., & Madriñán, S. (2018). On the Causes of Rapid Diversification in the Páramos: Isolation by Ecology and Genomic Divergence in Espeletia. Frontiers in Plant Science, 9, 1700. https://doi.org/10.3389/fpls.2018.01700 Cuesta F., Muriel P., Beck S., Meneses R.I., Halloy S., Salgado S, Ortiz E, B. M. T. (2012). Biodiversidad y Cambio Climático en los Andes Tropicales Conformación de una red de investigación para monitorear sus impactos y delinear acciones de adaptación (B. M. T. Cuesta Francisco, Muriel P., Beck S., Meneses R.I., Halloy S., Salgado S, Ortiz E, Ed.). Red Gloria-Andes. Curiel-Yuste, J., Here¿, A. M., Ojeda, G., Paz, A., Pizano, C., García-Angulo, D., & Lasso, E. (2017). Soil heterotrophic CO2 emissions from tropical high-elevation ecosystems (Páramos) and their sensitivity to temperature and moisture fluctuations. Soil Biology and Biochemistry. https://doi.org/10.1016/j.soilbio.2017.02.016 Debouza, N. E., Babu Thruppoyil, S., Gopi, K., Zain, S., & Ksiksi, T. (2021). Plant and seed germination responses to global change, with a focus on CO2: A review. One Ecosystem. https://doi.org/10.3897/oneeco.6.e74260 Díaz, S., Purvis, A., Cornelissen, J. H. C., Mace, G. M., Donoghue, M. J., Ewers, R. M., Jordano, P., & Pearse, W. D. (2013). Functional traits, the phylogeny of function, and ecosystem service vulnerability. Ecology and Evolution, 3(9), 2958-2975. https://doi.org/10.1002/ece3.601 Dirnböck, T., Dullinger, S., & Grabherr, G. (2003). A regional impact assessment of climate and land-use change on alpine vegetation. Journal of Biogeography, 30(3), 401-417. https://doi.org/10.1046/j.1365-2699.2003.00839.x Dormann S. J. Woodin, C. F. (2002). Climate change in the Arctic: Using plant functional types in a meta-analysis of field experiments. Functional Ecology, 16(1), 4-17. Doughty, C. E., & Goulden, M. L. (2008). Are tropical forests near a high temperature threshold Journal of Geophysical Research: Biogeosciences, 113(G1). https://doi.org/10.1029/2007JG000632 Estrada, C., & Monasterio, M. (1988). Ecología poblacional de una roseta gigante, Espeletia spicata Sch. Bip. (Compositae), del páramo desértico. Ecotropicos, 1, 25-39. Fagua, J. C., & González, V. H. (2007). Growth rates, reproductive phenology, and pollination ecology of Espeletia grandiflora (Asteraceae), a giant andean caulescent rosette. Plant Biology, 9(1), 127-135. Farquhar, G. D., von Caemmerer, S., & Berry, J. A. (1980). A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta, 149(1), 78-90. https://doi.org/10.1007/BF00386231 Frantzen, N. M. L. H. F., & Bouman, F. (1989). Dispersal and growth form patterns of some zonal páramo vegetation types. 38(4), 449-465. Funk, J. L., Larson, J. E., Ames, G. M., Butterfield, B. J., Cavender-Bares, J., Firn, J., Laughlin, D. C., Sutton-Grier, A. E., Williams, L., & Wright, J. (2017). Revisiting the Holy Grail: Using plant functional traits to understand ecological processes. Biological Reviews, 92(2), 1156-1173. https://doi.org/10.1111/brv.12275 Gauthier, P. P. G., Crous, K. Y., Ayub, G., Duan, H., Weerasinghe, L. K., Ellsworth, D. S., Tjoelker, M. G., Evans, J. R., Tissue, D. T., & Atkin, O. K. (2014). Drought increases heat tolerance of leaf respiration in Eucalyptus globulus saplings grown under both ambient and elevated atmospheric [CO2] and temperature. Journal of Experimental Botany, 65(22), 6471-6485. https://doi.org/10.1093/jxb/eru367 Goldstein, G., & Meinzer, F. (1983). Influence of insulating dead leaves and low temperatures on water balance in an Andean giant rosette plant. Plant, Cell and Environment, 6(8), 649-656. https://doi.org/10.1111/1365-3040.ep11589230 Goldstein, G., Meinzer, F., & Monasterio, M. (1984). The role of capacitance in the water balance of Andean giant rosette species. Plant, Cell and Environment, 7(3), 179-186. https://doi.org/10.1111/1365-3040.ep11614612 Guariguata, M. R., & Azocar, A. (1988). Seed Bank Dynamics and Germination Ecology in Espeletia timotensis (Compositae), an Andean Giant Rosette. Biotropica, 20(1), 54-59. JSTOR. https://doi.org/10.2307/2388426 Gunderson, C. A., O'hara, K. H., Campion, C. M., Walker, A. V., & Edwards, N. T. (2010). Thermal plasticity of photosynthesis: The role of acclimation in forest responses to a warming climate. Global Change Biology, 16(8), 2272-2286. https://doi.org/10.1111/j.1365-2486.2009.02090.x Hedberg, O. (1964). Features of Afroalpine Plant Ecology. Acta Phytogeographica Suecica 49, 150. Hikosaka, K., Ishikawa, K., Borjigidai, A., Muller, O., & Onoda, Y. (2006). Temperature acclimation of photosynthesis: Mechanisms involved in the changes in temperature dependence of photosynthetic rate. Journal of Experimental Botany, 57(2), 291-302. Hofstede, R. (2002). El manejo del páramo como ecosistema estratégico. In Los Páramos Andinos: Los desafios del Siglo XXI (Vol. 74, Issue 17 2, pp. 5-41). Hofstede, R., Calles, J., López, V., Polanco, R., Torres, F., Ulloa, J., Vásquez, A., & Cerra, M. (2014). Los páramos andinos ¿Qué sabemos? Estado de conocimiento sobre el impacto del cambio climático en el ecosistema páramo. UICN. Hofstede, R. G. M. (1995). The effects of grazing and burning on soil and plant nutrient concentrations in Colombian páramo grasslands. Plant and Soil, 173(1), 111-132. https://doi.org/10.1007/BF00155524 Hughes, L. (2000). Biological consequences of global warming: Is the signal already apparent In Trends in Ecology and Evolution. https://doi.org/10.1016/S0169-5347(99)01764-4 IPCC. (2021). Climate Change 2021: Impacts, Adaptation, and Vulnerability. A Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Ives, A. R., & Carpenter, S. R. (2007). Stability and Diversity of Ecosystems. Science, 317(5834), 58-62. https://doi.org/10.1126/science.1133258 Janzen, D. H. (1967). Why Mountain Passes are Higher in the Tropics. In The American Naturalist (Vol. 101, Issue 919, pp. 233-249). https://doi.org/10.1086/282487 Kappelle, M., Lovejoy, T. E., & Gámez Lobo, R. (2016). Costa Rican Ecosystems. University of Chicago Press. https://doi.org/10.7208/chicago/9780226121642.001.0001 Kattge, J., & Knorr, W. (2007). Temperature acclimation in a biochemical model of photosynthesis: A reanalysis of data from 36 species. Plant, Cell and Environment, 30(9), 1176-1190. https://doi.org/10.1111/j.1365-3040.2007.01690.x Körner, C. (2003). Alpine Plant Life: Functional Plant Ecology of High Mountain Ecosystems. In Alpine Plant Life, 2nd Edn. https://doi.org/10.1007/978-3-642-18970-8 Llambí, L., & Rada, F. (2019). Ecological research in the tropical alpine ecosystems of the Venezuelan páramo: Past, present and future. Plant Ecology & Diversity, 1-20. https://doi.org/10.1080/17550874.2019.1680762 Laporte, M. A., Mougenot, I., & Garnier, E. (2012). ThesauForm-Traits: A web based collaborative tool to develop a thesaurus for plant functional diversity research. Ecological Informatics, 11, 34-44. https://doi.org/10.1016/j.ecoinf.2012.04.004 Laughlin, D. C. (2014). The intrinsic dimensionality of plant traits and its relevance to community assembly. Journal of Ecology, 102(1), 186-193. https://doi.org/10.1111/1365-2745.12187 Attribution-NonCommercial-NoDerivatives 4.0 Internacional http://creativecommons.org/licenses/by-nc-nd/4.0/ info:eu-repo/semantics/openAccess http://purl.org/coar/access_right/c_abf2 Páramos Northern Andes Global climate change Functional traits Thermal acclimation Seed germination Biología Trabajo de grado - Doctorado info:eu-repo/semantics/doctoralThesis info:eu-repo/semantics/acceptedVersion http://purl.org/coar/resource_type/c_db06 http://purl.org/coar/version/c_ab4af688f83e57aa Text https://purl.org/redcol/resource_type/TD 2022 ftunivlosandes https://doi.org/10.57784/1992/5976210.2307/193647110.2307/129682710.1007/BF0015552410.1016/S0169-5347(99)01764-410.1086/28248710.1007/978-3-642-18970-810.1111/1365-2745.1218710.1111/j.1558-5646.1974.tb00799.x10.2307/298967010.2307/238817110.2307/2259244 2024-09-02T14:07:56Z En este trabajo se realizó la clasificación funcional de especies de páramo y se determinó la capacidad de aclimatación térmica de la fotosíntesis y la respiración en los diferentes grupos funcionales, así como el efecto de la temperatura en su capacidad de germinación. Above treeline in the mountains from the Northern Andes, there is an ecosystem of restricted distribution locally called as páramo. Páramos are tropical ecosystems of high altitude where there are special conditions that make them and their flora unique, such as greatly dynamic cloud conditions, excessive amounts of UV radiation, rapid changes of incident sunlight and pronounced temperature fluctuations during each day, among others. They are critical as a source of water in the region, are important carbon sinks, are home to a vast endemic flora, and possess some of the fastest rates of diversification in the world. Although the ecosystemic services of páramos depend to their high spatial abiotic and biotic heterogeneity that generates complex mosaics of plants associations; unfortunately, little work has been done on the susceptibility of páramo plants to climate change. Human-induced climate change is affecting all the Earth's biomes, including páramos, where models predict that temperatures will increase, while the volume and frequency of precipitation will decrease to the end of this century. All research indicates that warmer and drier environments will drive vegetation upward, as plants did in the past, during interglacial periods, rather than adapting to the new conditions. Plants can respond to climate change by adaptation, migration, or local extinction; adaptation implies that plants can acclimate its physiology to the new conditions, migration requires reproductive traits that favored dispersal and colonization of new areas, and it is well established, that species with limited ranges of distribution, such as those restricted to the páramo, have a higher risk of extinction. However, adaptation and migration capacities are not enough ... Doctoral or Postdoctoral Thesis Arctic Repositorio institucional Séneca Ecology 60 1 85 98