An assessment of long duration geodynamo simulations using new paleomagnetic modeling criteria (Q(PM))

Long-term temporal variations of the magnetic field (timescales >10 Myr), characterized from paleomagnetic data, have been hypothesized to reflect the evolution of Earth's deep interior and couplings between the core and mantle. By tying observed changes in the paleomagnetic record to mechan...

Full description

Bibliographic Details
Published in:Earth and Planetary Science Letters
Main Authors: Sprain, Courtney J, Biggin, Andrew J, Davies, Christopher J, Bono, Richard K, Meduri, Domenico G
Format: Article in Journal/Newspaper
Language:English
Published: Elsevier BV 2019
Subjects:
Online Access:http://livrepository.liverpool.ac.uk/3053318/
https://doi.org/10.1016/j.epsl.2019.115758
http://livrepository.liverpool.ac.uk/3053318/1/Sprain_et_al_Manuscript_revised_v2.pdf
id ftunivliverpool:oai:livrepository.liverpool.ac.uk:3053318
record_format openpolar
spelling ftunivliverpool:oai:livrepository.liverpool.ac.uk:3053318 2023-05-15T16:19:38+02:00 An assessment of long duration geodynamo simulations using new paleomagnetic modeling criteria (Q(PM)) Sprain, Courtney J Biggin, Andrew J Davies, Christopher J Bono, Richard K Meduri, Domenico G 2019 text http://livrepository.liverpool.ac.uk/3053318/ https://doi.org/10.1016/j.epsl.2019.115758 http://livrepository.liverpool.ac.uk/3053318/1/Sprain_et_al_Manuscript_revised_v2.pdf en eng Elsevier BV http://livrepository.liverpool.ac.uk/3053318/1/Sprain_et_al_Manuscript_revised_v2.pdf Sprain, Courtney J, Biggin, Andrew J orcid:0000-0003-4164-5924 , Davies, Christopher J, Bono, Richard K orcid:0000-0002-8222-2218 and Meduri, Domenico G (2019) An assessment of long duration geodynamo simulations using new paleomagnetic modeling criteria (Q(PM)). EARTH AND PLANETARY SCIENCE LETTERS, 526. p. 115758. Article NonPeerReviewed 2019 ftunivliverpool https://doi.org/10.1016/j.epsl.2019.115758 2023-01-19T23:45:00Z Long-term temporal variations of the magnetic field (timescales >10 Myr), characterized from paleomagnetic data, have been hypothesized to reflect the evolution of Earth's deep interior and couplings between the core and mantle. By tying observed changes in the paleomagnetic record to mechanisms predicted from numerical geodynamo simulations, we have a unique tool for assessing changes in the deep interior back in time. However, numerical simulations are not run in an Earth-like parameter regime and assessing how well they reproduce the geomagnetic field is difficult. Criteria have been proposed to determine the level of spatial and temporal agreement between simulations and observations spanning historical and Holocene timescales, but no such criteria exist for longer timescales. Here we present a new set of five criteria (Quality of Paleomagnetic Modeling criteria, QPM) that assess the degree of semblance between a simulated dynamo and the temporal and spatial variations of the long-term (∼10 Myr) paleomagnetic field. These criteria measure inclination anomaly, virtual geomagnetic pole dispersion at the equator, latitudinal variation in virtual geomagnetic pole dispersion, normalized width of virtual dipole moment distribution, and dipole field reversals. We have assessed 46 geodynamo simulations using the QPM criteria. The simulations have each been run for the equivalent of at least ∼300 kyr, span reversing and non-reversing regimes, and include either homogeneous or heterogeneous heat flux boundary conditions. We find that none of our simulations reproduce all salient aspects of the long-term paleomagnetic field behavior for the past 10 Myr. Nevertheless, our simulations bracket Earth values, suggesting that an Earth-like simulation is feasible within the available computationally accessible parameter space. This new set of criteria can inform future simulations that aim to reproduce all aspects of Earth's long-term magnetic field behavior. Article in Journal/Newspaper Geomagnetic Pole The University of Liverpool Repository Earth and Planetary Science Letters 526 115758
institution Open Polar
collection The University of Liverpool Repository
op_collection_id ftunivliverpool
language English
description Long-term temporal variations of the magnetic field (timescales >10 Myr), characterized from paleomagnetic data, have been hypothesized to reflect the evolution of Earth's deep interior and couplings between the core and mantle. By tying observed changes in the paleomagnetic record to mechanisms predicted from numerical geodynamo simulations, we have a unique tool for assessing changes in the deep interior back in time. However, numerical simulations are not run in an Earth-like parameter regime and assessing how well they reproduce the geomagnetic field is difficult. Criteria have been proposed to determine the level of spatial and temporal agreement between simulations and observations spanning historical and Holocene timescales, but no such criteria exist for longer timescales. Here we present a new set of five criteria (Quality of Paleomagnetic Modeling criteria, QPM) that assess the degree of semblance between a simulated dynamo and the temporal and spatial variations of the long-term (∼10 Myr) paleomagnetic field. These criteria measure inclination anomaly, virtual geomagnetic pole dispersion at the equator, latitudinal variation in virtual geomagnetic pole dispersion, normalized width of virtual dipole moment distribution, and dipole field reversals. We have assessed 46 geodynamo simulations using the QPM criteria. The simulations have each been run for the equivalent of at least ∼300 kyr, span reversing and non-reversing regimes, and include either homogeneous or heterogeneous heat flux boundary conditions. We find that none of our simulations reproduce all salient aspects of the long-term paleomagnetic field behavior for the past 10 Myr. Nevertheless, our simulations bracket Earth values, suggesting that an Earth-like simulation is feasible within the available computationally accessible parameter space. This new set of criteria can inform future simulations that aim to reproduce all aspects of Earth's long-term magnetic field behavior.
format Article in Journal/Newspaper
author Sprain, Courtney J
Biggin, Andrew J
Davies, Christopher J
Bono, Richard K
Meduri, Domenico G
spellingShingle Sprain, Courtney J
Biggin, Andrew J
Davies, Christopher J
Bono, Richard K
Meduri, Domenico G
An assessment of long duration geodynamo simulations using new paleomagnetic modeling criteria (Q(PM))
author_facet Sprain, Courtney J
Biggin, Andrew J
Davies, Christopher J
Bono, Richard K
Meduri, Domenico G
author_sort Sprain, Courtney J
title An assessment of long duration geodynamo simulations using new paleomagnetic modeling criteria (Q(PM))
title_short An assessment of long duration geodynamo simulations using new paleomagnetic modeling criteria (Q(PM))
title_full An assessment of long duration geodynamo simulations using new paleomagnetic modeling criteria (Q(PM))
title_fullStr An assessment of long duration geodynamo simulations using new paleomagnetic modeling criteria (Q(PM))
title_full_unstemmed An assessment of long duration geodynamo simulations using new paleomagnetic modeling criteria (Q(PM))
title_sort assessment of long duration geodynamo simulations using new paleomagnetic modeling criteria (q(pm))
publisher Elsevier BV
publishDate 2019
url http://livrepository.liverpool.ac.uk/3053318/
https://doi.org/10.1016/j.epsl.2019.115758
http://livrepository.liverpool.ac.uk/3053318/1/Sprain_et_al_Manuscript_revised_v2.pdf
genre Geomagnetic Pole
genre_facet Geomagnetic Pole
op_relation http://livrepository.liverpool.ac.uk/3053318/1/Sprain_et_al_Manuscript_revised_v2.pdf
Sprain, Courtney J, Biggin, Andrew J orcid:0000-0003-4164-5924 , Davies, Christopher J, Bono, Richard K orcid:0000-0002-8222-2218 and Meduri, Domenico G (2019) An assessment of long duration geodynamo simulations using new paleomagnetic modeling criteria (Q(PM)). EARTH AND PLANETARY SCIENCE LETTERS, 526. p. 115758.
op_doi https://doi.org/10.1016/j.epsl.2019.115758
container_title Earth and Planetary Science Letters
container_volume 526
container_start_page 115758
_version_ 1766006051736387584