The role of changing water geochemistry in mineral formation and distribution in estuaries

In deeply buried petroleum reservoirs, authigenic iron-rich chlorite coats on sand grains act as barriers between silica-rich waters and the host grain and inhibit the generation of authigenic quartz cements leading to anomalously high porosity and permeability in sandstones. The origin and distribu...

Full description

Bibliographic Details
Main Author: Byrne, Gemma Mary
Other Authors: Worden, Richard, Hodgson, David
Format: Text
Language:English
Subjects:
Online Access:http://livrepository.liverpool.ac.uk/11479/
http://livrepository.liverpool.ac.uk/11479/9/GMByrne_Final_PhD_Thesis_2013.pdf
http://livrepository.liverpool.ac.uk/11479/1/GMByrne_Final_PhD_Thesis_2013.pdf
http://livrepository.liverpool.ac.uk/11479/14/A.9.1.1.1_IC_Calibration.xlsx
http://livrepository.liverpool.ac.uk/11479/15/FINAL_Drift_Anion_Batch_1.xls
http://livrepository.liverpool.ac.uk/11479/16/FINAL_Drift_Anion_Batch_2.xls
http://livrepository.liverpool.ac.uk/11479/17/FINAL_Drift_Anion_Batch_3.xls
http://livrepository.liverpool.ac.uk/11479/18/FINAL_Drift_Anion_Batch_4.xls
http://livrepository.liverpool.ac.uk/11479/19/FINAL_Drift_Anion_Batch_5.xls
http://livrepository.liverpool.ac.uk/11479/20/FINAL_Drift_Anion_Batch_6.xls
http://livrepository.liverpool.ac.uk/11479/21/FINAL_Drift_Anion_Batch_7.xls
http://livrepository.liverpool.ac.uk/11479/22/FINAL_Drift_Anion_Batch_8.xls
http://livrepository.liverpool.ac.uk/11479/23/FINAL_Drift_Anion_Batch_9.xls
http://livrepository.liverpool.ac.uk/11479/24/FINAL_Drift_Anion_Batch_10.xls
http://livrepository.liverpool.ac.uk/11479/25/FINAL_Drift_Anion_Batch_11.xls
http://livrepository.liverpool.ac.uk/11479/26/FINAL_Drift_Anion_Batch_12.xls
http://livrepository.liverpool.ac.uk/11479/27/FINAL_Drift_Anion_Batch_13.xls
http://livrepository.liverpool.ac.uk/11479/28/FINAL_Drift_Cation_Batch_1.xlsx
http://livrepository.liverpool.ac.uk/11479/29/FINAL_Drift_Cation_Batch_2.xlsx
http://livrepository.liverpool.ac.uk/11479/30/FINAL_Drift_Cation_Batch_3.xlsx
http://livrepository.liverpool.ac.uk/11479/31/FINAL_Drift_Cation_Batch_4.xlsx
http://livrepository.liverpool.ac.uk/11479/32/FINAL_Drift_Cation_Batch_5.xlsx
http://livrepository.liverpool.ac.uk/11479/33/FINAL_Drift_Cation_Batch_6.xlsx
http://livrepository.liverpool.ac.uk/11479/34/A.9.1.2.1_Alkalinity_Manual_Titrations_2009.xlsx
http://livrepository.liverpool.ac.uk/11479/35/A.9.1.2.2_Chloride_Titrations_2012.xlsx
http://livrepository.liverpool.
id ftunivliverpool:oai:livrepository.liverpool.ac.uk:11479
record_format openpolar
institution Open Polar
collection The University of Liverpool Repository
op_collection_id ftunivliverpool
language English
description In deeply buried petroleum reservoirs, authigenic iron-rich chlorite coats on sand grains act as barriers between silica-rich waters and the host grain and inhibit the generation of authigenic quartz cements leading to anomalously high porosity and permeability in sandstones. The origin and distribution of iron-rich chlorite grain coats in the deep subsurface is poorly constrained. To address this, the formation processes and geographic distribution of potential precursor minerals to authigenic iron-rich chlorite grain coats, such as berthierine, have been investigated in two modern estuarine analogues. Estuarine environments are important locations of soluble iron-loss and mineral flocculation, and links between water geochemistry variation, climate, local geology and clay mineral distributions are here addressed. The two estuaries investigated, in NW Spain and SW Iceland, have contrasting climates and hinterland geology, which are major controls in clay mineral types present in the local soils and within the estuary. The formation and distribution of all minerals present in the estuarine environment have been considered. In NW Spain, kaolinite, illite-muscovite and chlorite are the dominant clay minerals in the fine fraction of both the soils and estuary sediments and are present in the estuary surface sediments in similar bulk ratios to the local soils. In SW Iceland, smectite, vermiculite and chlorite are the dominant clay minerals in the fine fraction of the local soils and estuary sediments. They are also present in similar bulk ratios in both the soils and in-estuary sediments. Precipitation of neoformed carbonate mineral occurs in the lower estuary reaches of the Spanish estuary but is not evident in the Icelandic estuary. Evaporation and the corresponding supersaturation of mixed waters are responsible for carbonate mineral formation, highlighting the significance of climate on mineral type within estuarine systems. Dissolved iron is lost within the estuarine turbidity maximum zone, in the presence of relatively small proportions of seawater in the upper reaches of the two estuaries. In NW Spain, 37% is removed from the water by the upper reaches and 98% is removed by the middle reaches. In SW Iceland, 91% is removed from the water in the upper reaches while all is removed by the middle reaches. The estuarine turbidity maximum zone is responsible for the re-suspension of solid iron phases, resulting in elevated particulate iron in the upper estuary reaches. In NW Spain, particulate iron increases from the riverine input by 54% in the upper reaches while in SW Iceland, particulate iron increases from the river and stream inputs by 242% in the upper reaches of the estuary. Within the surface sediments of both estuaries, there is minor variation in clay mineral distribution of the fine fraction of the surface sediments from the upper reaches to the lower estuary. Provenance is a dominant control on the clay mineral type present in modern environments. Climatic regime and estuarine circulation processes are also factors with regards to clay distribution within the estuarine environment. This study has led to an enhanced understanding of early diagenesis, such as the location of iron loss and deposition in estuaries, the role of provenance, climate and freshwater input in clay mineral type formation and how evaporation may introduce early diagenetic cements into modern estuaries and will lead to future research development and predictive models relative to iron-rich chlorite grain coat distribution.
author2 Worden, Richard
Hodgson, David
format Text
author Byrne, Gemma Mary
spellingShingle Byrne, Gemma Mary
The role of changing water geochemistry in mineral formation and distribution in estuaries
author_facet Byrne, Gemma Mary
author_sort Byrne, Gemma Mary
title The role of changing water geochemistry in mineral formation and distribution in estuaries
title_short The role of changing water geochemistry in mineral formation and distribution in estuaries
title_full The role of changing water geochemistry in mineral formation and distribution in estuaries
title_fullStr The role of changing water geochemistry in mineral formation and distribution in estuaries
title_full_unstemmed The role of changing water geochemistry in mineral formation and distribution in estuaries
title_sort role of changing water geochemistry in mineral formation and distribution in estuaries
url http://livrepository.liverpool.ac.uk/11479/
http://livrepository.liverpool.ac.uk/11479/9/GMByrne_Final_PhD_Thesis_2013.pdf
http://livrepository.liverpool.ac.uk/11479/1/GMByrne_Final_PhD_Thesis_2013.pdf
http://livrepository.liverpool.ac.uk/11479/14/A.9.1.1.1_IC_Calibration.xlsx
http://livrepository.liverpool.ac.uk/11479/15/FINAL_Drift_Anion_Batch_1.xls
http://livrepository.liverpool.ac.uk/11479/16/FINAL_Drift_Anion_Batch_2.xls
http://livrepository.liverpool.ac.uk/11479/17/FINAL_Drift_Anion_Batch_3.xls
http://livrepository.liverpool.ac.uk/11479/18/FINAL_Drift_Anion_Batch_4.xls
http://livrepository.liverpool.ac.uk/11479/19/FINAL_Drift_Anion_Batch_5.xls
http://livrepository.liverpool.ac.uk/11479/20/FINAL_Drift_Anion_Batch_6.xls
http://livrepository.liverpool.ac.uk/11479/21/FINAL_Drift_Anion_Batch_7.xls
http://livrepository.liverpool.ac.uk/11479/22/FINAL_Drift_Anion_Batch_8.xls
http://livrepository.liverpool.ac.uk/11479/23/FINAL_Drift_Anion_Batch_9.xls
http://livrepository.liverpool.ac.uk/11479/24/FINAL_Drift_Anion_Batch_10.xls
http://livrepository.liverpool.ac.uk/11479/25/FINAL_Drift_Anion_Batch_11.xls
http://livrepository.liverpool.ac.uk/11479/26/FINAL_Drift_Anion_Batch_12.xls
http://livrepository.liverpool.ac.uk/11479/27/FINAL_Drift_Anion_Batch_13.xls
http://livrepository.liverpool.ac.uk/11479/28/FINAL_Drift_Cation_Batch_1.xlsx
http://livrepository.liverpool.ac.uk/11479/29/FINAL_Drift_Cation_Batch_2.xlsx
http://livrepository.liverpool.ac.uk/11479/30/FINAL_Drift_Cation_Batch_3.xlsx
http://livrepository.liverpool.ac.uk/11479/31/FINAL_Drift_Cation_Batch_4.xlsx
http://livrepository.liverpool.ac.uk/11479/32/FINAL_Drift_Cation_Batch_5.xlsx
http://livrepository.liverpool.ac.uk/11479/33/FINAL_Drift_Cation_Batch_6.xlsx
http://livrepository.liverpool.ac.uk/11479/34/A.9.1.2.1_Alkalinity_Manual_Titrations_2009.xlsx
http://livrepository.liverpool.ac.uk/11479/35/A.9.1.2.2_Chloride_Titrations_2012.xlsx
http://livrepository.liverpool.
genre Iceland
genre_facet Iceland
op_relation http://livrepository.liverpool.ac.uk/11479/9/GMByrne_Final_PhD_Thesis_2013.pdf
http://livrepository.liverpool.ac.uk/11479/1/GMByrne_Final_PhD_Thesis_2013.pdf
http://livrepository.liverpool.ac.uk/11479/14/A.9.1.1.1_IC_Calibration.xlsx
http://livrepository.liverpool.ac.uk/11479/15/FINAL_Drift_Anion_Batch_1.xls
http://livrepository.liverpool.ac.uk/11479/16/FINAL_Drift_Anion_Batch_2.xls
http://livrepository.liverpool.ac.uk/11479/17/FINAL_Drift_Anion_Batch_3.xls
http://livrepository.liverpool.ac.uk/11479/18/FINAL_Drift_Anion_Batch_4.xls
http://livrepository.liverpool.ac.uk/11479/19/FINAL_Drift_Anion_Batch_5.xls
http://livrepository.liverpool.ac.uk/11479/20/FINAL_Drift_Anion_Batch_6.xls
http://livrepository.liverpool.ac.uk/11479/21/FINAL_Drift_Anion_Batch_7.xls
http://livrepository.liverpool.ac.uk/11479/22/FINAL_Drift_Anion_Batch_8.xls
http://livrepository.liverpool.ac.uk/11479/23/FINAL_Drift_Anion_Batch_9.xls
http://livrepository.liverpool.ac.uk/11479/24/FINAL_Drift_Anion_Batch_10.xls
http://livrepository.liverpool.ac.uk/11479/25/FINAL_Drift_Anion_Batch_11.xls
http://livrepository.liverpool.ac.uk/11479/26/FINAL_Drift_Anion_Batch_12.xls
http://livrepository.liverpool.ac.uk/11479/27/FINAL_Drift_Anion_Batch_13.xls
http://livrepository.liverpool.ac.uk/11479/28/FINAL_Drift_Cation_Batch_1.xlsx
http://livrepository.liverpool.ac.uk/11479/29/FINAL_Drift_Cation_Batch_2.xlsx
http://livrepository.liverpool.ac.uk/11479/30/FINAL_Drift_Cation_Batch_3.xlsx
http://livrepository.liverpool.ac.uk/11479/31/FINAL_Drift_Cation_Batch_4.xlsx
http://livrepository.liverpool.ac.uk/11479/32/FINAL_Drift_Cation_Batch_5.xlsx
http://livrepository.liverpool.ac.uk/11479/33/FINAL_Drift_Cation_Batch_6.xlsx
http://livrepository.liverpool.ac.uk/11479/34/A.9.1.2.1_Alkalinity_Manual_Titrations_2009.xlsx
http://livrepository.liverpool.ac.uk/11479/35/A.9.1.2.2_Chloride_Titrations_2012.xlsx
http://livrepository.liverpool.ac.uk/11479/36/A.9.2.1_Water_Sample_Locations.xlsx
http://livrepository.liverpool.ac.uk/11479/37/A.9.2.2_Bulk_Water_Compositions.xlsx
http://livrepository.liverpool.ac.uk/11479/38/A.9.3.1_XRD_Anll%C3%B3ns.xlsx
http://livrepository.liverpool.ac.uk/11479/39/A.9.3.2_XRD_Leir%C3%A1rvogur.xlsx
http://livrepository.liverpool.ac.uk/11479/40/A060_images.docx
http://livrepository.liverpool.ac.uk/11479/41/B12_images.docx
http://livrepository.liverpool.ac.uk/11479/42/B13_images.docx
http://livrepository.liverpool.ac.uk/11479/43/B14_images.docx
http://livrepository.liverpool.ac.uk/11479/44/B15_images.docx
http://livrepository.liverpool.ac.uk/11479/45/Appendix_9421.pdf
http://livrepository.liverpool.ac.uk/11479/46/Appendix_9422.pdf
http://livrepository.liverpool.ac.uk/11479/47/Appendix_9423.pdf
http://livrepository.liverpool.ac.uk/11479/48/Appendix_9424.pdf
http://livrepository.liverpool.ac.uk/11479/49/Appendix_9425.pdf
http://livrepository.liverpool.ac.uk/11479/50/Appendix_9426.pdf
http://livrepository.liverpool.ac.uk/11479/51/Appendix_9427.pdf
http://livrepository.liverpool.ac.uk/11479/52/Appendix_9431.pdf
http://livrepository.liverpool.ac.uk/11479/53/Appendix_9432.pdf
http://livrepository.liverpool.ac.uk/11479/54/Appendix_9433.pdf
http://livrepository.liverpool.ac.uk/11479/55/Appendix_9434.pdf
http://livrepository.liverpool.ac.uk/11479/56/Appendix_9435.pdf
http://livrepository.liverpool.ac.uk/11479/57/Appendix_9436.pdf
http://livrepository.liverpool.ac.uk/11479/58/Appendix_9437.pdf
http://livrepository.liverpool.ac.uk/11479/59/Appendix_9438.pdf
http://livrepository.liverpool.ac.uk/11479/60/Appendix_9439.pdf
http://livrepository.liverpool.ac.uk/11479/62/Appendix_94310.pdf
op_rights cc_by_nd
op_rightsnorm CC-BY-ND
_version_ 1766038495620497408
spelling ftunivliverpool:oai:livrepository.liverpool.ac.uk:11479 2023-05-15T16:48:24+02:00 The role of changing water geochemistry in mineral formation and distribution in estuaries Byrne, Gemma Mary Worden, Richard Hodgson, David application/pdf application/vnd.ms-excel application/msword http://livrepository.liverpool.ac.uk/11479/ http://livrepository.liverpool.ac.uk/11479/9/GMByrne_Final_PhD_Thesis_2013.pdf http://livrepository.liverpool.ac.uk/11479/1/GMByrne_Final_PhD_Thesis_2013.pdf http://livrepository.liverpool.ac.uk/11479/14/A.9.1.1.1_IC_Calibration.xlsx http://livrepository.liverpool.ac.uk/11479/15/FINAL_Drift_Anion_Batch_1.xls http://livrepository.liverpool.ac.uk/11479/16/FINAL_Drift_Anion_Batch_2.xls http://livrepository.liverpool.ac.uk/11479/17/FINAL_Drift_Anion_Batch_3.xls http://livrepository.liverpool.ac.uk/11479/18/FINAL_Drift_Anion_Batch_4.xls http://livrepository.liverpool.ac.uk/11479/19/FINAL_Drift_Anion_Batch_5.xls http://livrepository.liverpool.ac.uk/11479/20/FINAL_Drift_Anion_Batch_6.xls http://livrepository.liverpool.ac.uk/11479/21/FINAL_Drift_Anion_Batch_7.xls http://livrepository.liverpool.ac.uk/11479/22/FINAL_Drift_Anion_Batch_8.xls http://livrepository.liverpool.ac.uk/11479/23/FINAL_Drift_Anion_Batch_9.xls http://livrepository.liverpool.ac.uk/11479/24/FINAL_Drift_Anion_Batch_10.xls http://livrepository.liverpool.ac.uk/11479/25/FINAL_Drift_Anion_Batch_11.xls http://livrepository.liverpool.ac.uk/11479/26/FINAL_Drift_Anion_Batch_12.xls http://livrepository.liverpool.ac.uk/11479/27/FINAL_Drift_Anion_Batch_13.xls http://livrepository.liverpool.ac.uk/11479/28/FINAL_Drift_Cation_Batch_1.xlsx http://livrepository.liverpool.ac.uk/11479/29/FINAL_Drift_Cation_Batch_2.xlsx http://livrepository.liverpool.ac.uk/11479/30/FINAL_Drift_Cation_Batch_3.xlsx http://livrepository.liverpool.ac.uk/11479/31/FINAL_Drift_Cation_Batch_4.xlsx http://livrepository.liverpool.ac.uk/11479/32/FINAL_Drift_Cation_Batch_5.xlsx http://livrepository.liverpool.ac.uk/11479/33/FINAL_Drift_Cation_Batch_6.xlsx http://livrepository.liverpool.ac.uk/11479/34/A.9.1.2.1_Alkalinity_Manual_Titrations_2009.xlsx http://livrepository.liverpool.ac.uk/11479/35/A.9.1.2.2_Chloride_Titrations_2012.xlsx http://livrepository.liverpool. en eng http://livrepository.liverpool.ac.uk/11479/9/GMByrne_Final_PhD_Thesis_2013.pdf http://livrepository.liverpool.ac.uk/11479/1/GMByrne_Final_PhD_Thesis_2013.pdf http://livrepository.liverpool.ac.uk/11479/14/A.9.1.1.1_IC_Calibration.xlsx http://livrepository.liverpool.ac.uk/11479/15/FINAL_Drift_Anion_Batch_1.xls http://livrepository.liverpool.ac.uk/11479/16/FINAL_Drift_Anion_Batch_2.xls http://livrepository.liverpool.ac.uk/11479/17/FINAL_Drift_Anion_Batch_3.xls http://livrepository.liverpool.ac.uk/11479/18/FINAL_Drift_Anion_Batch_4.xls http://livrepository.liverpool.ac.uk/11479/19/FINAL_Drift_Anion_Batch_5.xls http://livrepository.liverpool.ac.uk/11479/20/FINAL_Drift_Anion_Batch_6.xls http://livrepository.liverpool.ac.uk/11479/21/FINAL_Drift_Anion_Batch_7.xls http://livrepository.liverpool.ac.uk/11479/22/FINAL_Drift_Anion_Batch_8.xls http://livrepository.liverpool.ac.uk/11479/23/FINAL_Drift_Anion_Batch_9.xls http://livrepository.liverpool.ac.uk/11479/24/FINAL_Drift_Anion_Batch_10.xls http://livrepository.liverpool.ac.uk/11479/25/FINAL_Drift_Anion_Batch_11.xls http://livrepository.liverpool.ac.uk/11479/26/FINAL_Drift_Anion_Batch_12.xls http://livrepository.liverpool.ac.uk/11479/27/FINAL_Drift_Anion_Batch_13.xls http://livrepository.liverpool.ac.uk/11479/28/FINAL_Drift_Cation_Batch_1.xlsx http://livrepository.liverpool.ac.uk/11479/29/FINAL_Drift_Cation_Batch_2.xlsx http://livrepository.liverpool.ac.uk/11479/30/FINAL_Drift_Cation_Batch_3.xlsx http://livrepository.liverpool.ac.uk/11479/31/FINAL_Drift_Cation_Batch_4.xlsx http://livrepository.liverpool.ac.uk/11479/32/FINAL_Drift_Cation_Batch_5.xlsx http://livrepository.liverpool.ac.uk/11479/33/FINAL_Drift_Cation_Batch_6.xlsx http://livrepository.liverpool.ac.uk/11479/34/A.9.1.2.1_Alkalinity_Manual_Titrations_2009.xlsx http://livrepository.liverpool.ac.uk/11479/35/A.9.1.2.2_Chloride_Titrations_2012.xlsx http://livrepository.liverpool.ac.uk/11479/36/A.9.2.1_Water_Sample_Locations.xlsx http://livrepository.liverpool.ac.uk/11479/37/A.9.2.2_Bulk_Water_Compositions.xlsx http://livrepository.liverpool.ac.uk/11479/38/A.9.3.1_XRD_Anll%C3%B3ns.xlsx http://livrepository.liverpool.ac.uk/11479/39/A.9.3.2_XRD_Leir%C3%A1rvogur.xlsx http://livrepository.liverpool.ac.uk/11479/40/A060_images.docx http://livrepository.liverpool.ac.uk/11479/41/B12_images.docx http://livrepository.liverpool.ac.uk/11479/42/B13_images.docx http://livrepository.liverpool.ac.uk/11479/43/B14_images.docx http://livrepository.liverpool.ac.uk/11479/44/B15_images.docx http://livrepository.liverpool.ac.uk/11479/45/Appendix_9421.pdf http://livrepository.liverpool.ac.uk/11479/46/Appendix_9422.pdf http://livrepository.liverpool.ac.uk/11479/47/Appendix_9423.pdf http://livrepository.liverpool.ac.uk/11479/48/Appendix_9424.pdf http://livrepository.liverpool.ac.uk/11479/49/Appendix_9425.pdf http://livrepository.liverpool.ac.uk/11479/50/Appendix_9426.pdf http://livrepository.liverpool.ac.uk/11479/51/Appendix_9427.pdf http://livrepository.liverpool.ac.uk/11479/52/Appendix_9431.pdf http://livrepository.liverpool.ac.uk/11479/53/Appendix_9432.pdf http://livrepository.liverpool.ac.uk/11479/54/Appendix_9433.pdf http://livrepository.liverpool.ac.uk/11479/55/Appendix_9434.pdf http://livrepository.liverpool.ac.uk/11479/56/Appendix_9435.pdf http://livrepository.liverpool.ac.uk/11479/57/Appendix_9436.pdf http://livrepository.liverpool.ac.uk/11479/58/Appendix_9437.pdf http://livrepository.liverpool.ac.uk/11479/59/Appendix_9438.pdf http://livrepository.liverpool.ac.uk/11479/60/Appendix_9439.pdf http://livrepository.liverpool.ac.uk/11479/62/Appendix_94310.pdf cc_by_nd CC-BY-ND NonPeerReviewed ftunivliverpool 2022-04-25T08:44:39Z In deeply buried petroleum reservoirs, authigenic iron-rich chlorite coats on sand grains act as barriers between silica-rich waters and the host grain and inhibit the generation of authigenic quartz cements leading to anomalously high porosity and permeability in sandstones. The origin and distribution of iron-rich chlorite grain coats in the deep subsurface is poorly constrained. To address this, the formation processes and geographic distribution of potential precursor minerals to authigenic iron-rich chlorite grain coats, such as berthierine, have been investigated in two modern estuarine analogues. Estuarine environments are important locations of soluble iron-loss and mineral flocculation, and links between water geochemistry variation, climate, local geology and clay mineral distributions are here addressed. The two estuaries investigated, in NW Spain and SW Iceland, have contrasting climates and hinterland geology, which are major controls in clay mineral types present in the local soils and within the estuary. The formation and distribution of all minerals present in the estuarine environment have been considered. In NW Spain, kaolinite, illite-muscovite and chlorite are the dominant clay minerals in the fine fraction of both the soils and estuary sediments and are present in the estuary surface sediments in similar bulk ratios to the local soils. In SW Iceland, smectite, vermiculite and chlorite are the dominant clay minerals in the fine fraction of the local soils and estuary sediments. They are also present in similar bulk ratios in both the soils and in-estuary sediments. Precipitation of neoformed carbonate mineral occurs in the lower estuary reaches of the Spanish estuary but is not evident in the Icelandic estuary. Evaporation and the corresponding supersaturation of mixed waters are responsible for carbonate mineral formation, highlighting the significance of climate on mineral type within estuarine systems. Dissolved iron is lost within the estuarine turbidity maximum zone, in the presence of relatively small proportions of seawater in the upper reaches of the two estuaries. In NW Spain, 37% is removed from the water by the upper reaches and 98% is removed by the middle reaches. In SW Iceland, 91% is removed from the water in the upper reaches while all is removed by the middle reaches. The estuarine turbidity maximum zone is responsible for the re-suspension of solid iron phases, resulting in elevated particulate iron in the upper estuary reaches. In NW Spain, particulate iron increases from the riverine input by 54% in the upper reaches while in SW Iceland, particulate iron increases from the river and stream inputs by 242% in the upper reaches of the estuary. Within the surface sediments of both estuaries, there is minor variation in clay mineral distribution of the fine fraction of the surface sediments from the upper reaches to the lower estuary. Provenance is a dominant control on the clay mineral type present in modern environments. Climatic regime and estuarine circulation processes are also factors with regards to clay distribution within the estuarine environment. This study has led to an enhanced understanding of early diagenesis, such as the location of iron loss and deposition in estuaries, the role of provenance, climate and freshwater input in clay mineral type formation and how evaporation may introduce early diagenetic cements into modern estuaries and will lead to future research development and predictive models relative to iron-rich chlorite grain coat distribution. Text Iceland The University of Liverpool Repository