Casual Rerouting of AERONET Sun/Sky Photometers: Toward a New Network of Ground Measurements Dedicated to the Monitoring of Surface Properties?
International audience This paper presents an innovative method for observing vegetation health at a very high spatial resolution (~5 × 5 cm) and low cost by upgrading an existing Aerosol RObotic NETwork (AERONET) ground station dedicated to the observation of aerosols in the atmosphere. This study...
Published in: | Remote Sensing |
---|---|
Main Authors: | , , , , , , , , , , , |
Other Authors: | , , , , , , , , , , , , , , , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
HAL CCSD
2021
|
Subjects: | |
Online Access: | https://hal.science/hal-03318145 https://hal.science/hal-03318145/document https://hal.science/hal-03318145/file/carrer%20et%20al.,%20Remote%20Sens.,%202021.pdf https://doi.org/10.3390/rs13163072 |
Summary: | International audience This paper presents an innovative method for observing vegetation health at a very high spatial resolution (~5 × 5 cm) and low cost by upgrading an existing Aerosol RObotic NETwork (AERONET) ground station dedicated to the observation of aerosols in the atmosphere. This study evaluates the capability of a sun/sky photometer to perform additional surface reflectance observations. The ground station of Toulouse, France, which belongs to the AERONET sun/sky photometer network, is used for this feasibility study. The experiment was conducted for a 5-year period (between 2016 and 2020). The sun/sky photometer was mounted on a metallic structure at a height of 2.5 m, and the acquisition software was adapted to add a periodical (every hour) ground-observation scenario with the sun/sky photometer observing the surface instead of being inactive. Evaluation is performed by using a classical metric characterizing the vegetation health: the normalized difference vegetation index (NDVI), using as reference the satellite NDVI derived from a Sentinel-2 (S2) sensor at 10 × 10 m resolution. Comparison for the 5-year period showed good agreement between the S2 and sun/sky photometer NDVIs (i.e., bias = 0.004, RMSD = 0.082, and R = 0.882 for a mean value of S2A NDVI around 0.6). Discrepancies could have been due to spatial-representativeness issues (of the ground measurement compared to S2), the differences between spectral bands, and the quality of the atmospheric correction applied on S2 data (accuracy of the sun/sky photometer instrument was better than 0.1%). However, the accuracy of the atmospheric correction applied on S2 data in this station appeared to be of good quality, and no dependence on the presence of aerosols was observed. This first analysis of the potential of the CIMEL CE318 sun/sky photometer to monitor the surface is encouraging. Further analyses need to be carried out to estimate the potential in different AERONET stations. The occasional rerouting of AERONET stations could lead to a ... |
---|