Numerical simulations of shallow groundwater flow and heat transport in a continuous permafrost setting under the impact of climate warming

Numerical simulations of coupled groundwater flow and heat transport are used to address how hydrogeological conditions can affect permafrost dynamics. The simulations are based on a 2D vertical-plane conceptual model of a study site at the Iqaluit Airport, Nunavut, Canada, which includes a 50 m dee...

Full description

Bibliographic Details
Published in:Canadian Geotechnical Journal
Main Authors: Shojae Ghias, Masoumeh, Therrien, René, Lemieux, Jean-Michel, Molson, John W. H.
Format: Other/Unknown Material
Language:English
Published: Conseil national de recherches du Canada 2020
Subjects:
Online Access:https://hdl.handle.net/20.500.11794/38955
https://doi.org/10.1139/cgj-2017-0182
_version_ 1833104029272506368
author Shojae Ghias, Masoumeh
Therrien, René
Lemieux, Jean-Michel
Molson, John W. H.
author_facet Shojae Ghias, Masoumeh
Therrien, René
Lemieux, Jean-Michel
Molson, John W. H.
author_sort Shojae Ghias, Masoumeh
collection Université Laval: CorpusUL
container_issue 3
container_start_page 436
container_title Canadian Geotechnical Journal
container_volume 56
description Numerical simulations of coupled groundwater flow and heat transport are used to address how hydrogeological conditions can affect permafrost dynamics. The simulations are based on a 2D vertical-plane conceptual model of a study site at the Iqaluit Airport, Nunavut, Canada, which includes a 50 m deep permafrost terrain with a shallow active layer, overlain by a paved taxiway with winter snow-covered embankments. Coupled groundwater flow and advective-conductive heat transport with freeze-thaw dynamics, temperature-dependent porewater freezing functions and latent heat are included in the model. The simulation results show that a smooth (low-slope) freezing function with a higher residual unfrozen moisture content produced a deeper thaw front compared to that using a steeper freezing function, generating a maximum increase in the depth to permafrost of 17.5 m after 268 years. Permafrost thaw rates in high-permeability zones within a heterogeneous system were also relatively higher compared to an otherwise equivalent homogeneous soil, resulting in a maximum increase of 2.6 m in the depth to permafrost after 238 years. As recharge water cools while flowing along the upgradient permafrost table, advectively driven heat transport is paradoxically shown to temporarily increase the height of the permafrost table in downgradient areas. Des simulations numériques du débit d’eau souterraine couplé et du transport de chaleur sont utilisées pour déterminer comment les conditions hydrogéologiques peuvent affecter la dynamique du pergélisol. Les simulations sont basées sur un modèle conceptuel en deux dimensions à plan vertical d’un site d’étude à l’aéroport d’Iqaluit, au Nunavut, qui comprend un terrain de pergélisol de 50 m de profondeur avec une couche active peu profonde, recouverte d’une voie de circulation pavée. L’écoulement d’eau souterraine couplée et le transport de chaleur par advection–conduction avec la dynamique de gel–dégel, les fonctions de congélation de l’eau interstitielle dépendant de la température et ...
format Other/Unknown Material
genre Iqaluit
Nunavut
permafrost
pergélisol
genre_facet Iqaluit
Nunavut
permafrost
pergélisol
geographic Canada
Iqaluit Airport
Nunavut
geographic_facet Canada
Iqaluit Airport
Nunavut
id ftunivlavalcorp:oai:corpus.ulaval.ca:20.500.11794/38955
institution Open Polar
language English
long_lat ENVELOPE(-68.553,-68.553,63.755,63.755)
op_collection_id ftunivlavalcorp
op_container_end_page 448
op_doi https://doi.org/20.500.11794/3895510.1139/cgj-2017-0182
op_relation https://hdl.handle.net/20.500.11794/38955
op_rights http://purl.org/coar/access_right/c_abf2
publishDate 2020
publisher Conseil national de recherches du Canada
record_format openpolar
spelling ftunivlavalcorp:oai:corpus.ulaval.ca:20.500.11794/38955 2025-05-25T13:51:06+00:00 Numerical simulations of shallow groundwater flow and heat transport in a continuous permafrost setting under the impact of climate warming Shojae Ghias, Masoumeh Therrien, René Lemieux, Jean-Michel Molson, John W. H. 2020-04-23T12:39:54Z application/pdf https://hdl.handle.net/20.500.11794/38955 https://doi.org/10.1139/cgj-2017-0182 eng eng Conseil national de recherches du Canada https://hdl.handle.net/20.500.11794/38955 http://purl.org/coar/access_right/c_abf2 Permafrost Groundwater Numerical modelling Heterogeneity Freezing function Pergélisol Eaux souterraines Modélisation numérique Hétérogénéité Fonction de congelation Eau souterraine -- Écoulement -- Méthodes de simulation Eau souterraine -- Propriétés thermiques Climat -- Changements article de recherche COAR1_1::Texte::Périodique::Revue::Contribution à un journal::Article::Article de recherche 2020 ftunivlavalcorp https://doi.org/20.500.11794/3895510.1139/cgj-2017-0182 2025-04-28T00:28:25Z Numerical simulations of coupled groundwater flow and heat transport are used to address how hydrogeological conditions can affect permafrost dynamics. The simulations are based on a 2D vertical-plane conceptual model of a study site at the Iqaluit Airport, Nunavut, Canada, which includes a 50 m deep permafrost terrain with a shallow active layer, overlain by a paved taxiway with winter snow-covered embankments. Coupled groundwater flow and advective-conductive heat transport with freeze-thaw dynamics, temperature-dependent porewater freezing functions and latent heat are included in the model. The simulation results show that a smooth (low-slope) freezing function with a higher residual unfrozen moisture content produced a deeper thaw front compared to that using a steeper freezing function, generating a maximum increase in the depth to permafrost of 17.5 m after 268 years. Permafrost thaw rates in high-permeability zones within a heterogeneous system were also relatively higher compared to an otherwise equivalent homogeneous soil, resulting in a maximum increase of 2.6 m in the depth to permafrost after 238 years. As recharge water cools while flowing along the upgradient permafrost table, advectively driven heat transport is paradoxically shown to temporarily increase the height of the permafrost table in downgradient areas. Des simulations numériques du débit d’eau souterraine couplé et du transport de chaleur sont utilisées pour déterminer comment les conditions hydrogéologiques peuvent affecter la dynamique du pergélisol. Les simulations sont basées sur un modèle conceptuel en deux dimensions à plan vertical d’un site d’étude à l’aéroport d’Iqaluit, au Nunavut, qui comprend un terrain de pergélisol de 50 m de profondeur avec une couche active peu profonde, recouverte d’une voie de circulation pavée. L’écoulement d’eau souterraine couplée et le transport de chaleur par advection–conduction avec la dynamique de gel–dégel, les fonctions de congélation de l’eau interstitielle dépendant de la température et ... Other/Unknown Material Iqaluit Nunavut permafrost pergélisol Université Laval: CorpusUL Canada Iqaluit Airport ENVELOPE(-68.553,-68.553,63.755,63.755) Nunavut Canadian Geotechnical Journal 56 3 436 448
spellingShingle Permafrost
Groundwater
Numerical modelling
Heterogeneity
Freezing function
Pergélisol
Eaux souterraines
Modélisation numérique
Hétérogénéité
Fonction de congelation
Eau souterraine -- Écoulement -- Méthodes de simulation
Eau souterraine -- Propriétés thermiques
Climat -- Changements
Shojae Ghias, Masoumeh
Therrien, René
Lemieux, Jean-Michel
Molson, John W. H.
Numerical simulations of shallow groundwater flow and heat transport in a continuous permafrost setting under the impact of climate warming
title Numerical simulations of shallow groundwater flow and heat transport in a continuous permafrost setting under the impact of climate warming
title_full Numerical simulations of shallow groundwater flow and heat transport in a continuous permafrost setting under the impact of climate warming
title_fullStr Numerical simulations of shallow groundwater flow and heat transport in a continuous permafrost setting under the impact of climate warming
title_full_unstemmed Numerical simulations of shallow groundwater flow and heat transport in a continuous permafrost setting under the impact of climate warming
title_short Numerical simulations of shallow groundwater flow and heat transport in a continuous permafrost setting under the impact of climate warming
title_sort numerical simulations of shallow groundwater flow and heat transport in a continuous permafrost setting under the impact of climate warming
topic Permafrost
Groundwater
Numerical modelling
Heterogeneity
Freezing function
Pergélisol
Eaux souterraines
Modélisation numérique
Hétérogénéité
Fonction de congelation
Eau souterraine -- Écoulement -- Méthodes de simulation
Eau souterraine -- Propriétés thermiques
Climat -- Changements
topic_facet Permafrost
Groundwater
Numerical modelling
Heterogeneity
Freezing function
Pergélisol
Eaux souterraines
Modélisation numérique
Hétérogénéité
Fonction de congelation
Eau souterraine -- Écoulement -- Méthodes de simulation
Eau souterraine -- Propriétés thermiques
Climat -- Changements
url https://hdl.handle.net/20.500.11794/38955
https://doi.org/10.1139/cgj-2017-0182