Estimación del plano anestésico en elefante marinos del sur utilizando técnicas de Machine Learning
Prediction systems are techniques that build and study new forecasts through a branch of the artificial intelligence called Machine Learning. In this work we intend to estimate the time that remains anesthetized an southern elephant seal to which you have applied a combination of drugs (Zoletil®), t...
Main Authors: | , |
---|---|
Format: | Conference Object |
Language: | Spanish |
Published: |
2016
|
Subjects: | |
Online Access: | http://hdl.handle.net/10915/56749 |
id |
ftunivlaplata:oai:sedici.unlp.edu.ar:10915/56749 |
---|---|
record_format |
openpolar |
spelling |
ftunivlaplata:oai:sedici.unlp.edu.ar:10915/56749 2023-05-15T16:05:16+02:00 Estimación del plano anestésico en elefante marinos del sur utilizando técnicas de Machine Learning Zàrate, Marcos Lewis, Mirtha Noemí 2016-10 application/pdf p. 692-701 http://hdl.handle.net/10915/56749 es spa XXII Congreso Argentino de Ciencias de la Computación (CACIC 2016). http://sedici.unlp.edu.ar/handle/10915/55718 http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) CC-BY-NC-SA Ciencias Informáticas Inteligencia Artificial WEKA ecología del paisaje Data mining Objeto de conferencia 2016 ftunivlaplata 2019-01-13T00:56:00Z Prediction systems are techniques that build and study new forecasts through a branch of the artificial intelligence called Machine Learning. In this work we intend to estimate the time that remains anesthetized an southern elephant seal to which you have applied a combination of drugs (Zoletil®), the fundamental objective of anesthesia is to avoid risky situations to researchers studying this species. To know these times data mining techniques and algorithms used particular classification algorithms were compared J4.8, SMO, Random Tree, NBTree y Naïve Bayes with data mining tool Weka and a data set containing the records of 96 individuals undergoing anesthesia procedure. It is concluded that after tests Random Tree was the classification algorithm that best responded, making this an accuracy of 98.79%. XIII Workshop Bases de datos y Minería de Datos (WBDMD). Red de Universidades con Carreras en Informática (RedUNCI) Conference Object Elephant Seal Southern Elephant Seal Universidad Nacional de La Plata (UNLP): SeDiCI (Servicio de Difusión de la Creación Intelectual) Elefante ENVELOPE(-55.167,-55.167,-61.167,-61.167) Plano ENVELOPE(-61.250,-61.250,-62.783,-62.783) |
institution |
Open Polar |
collection |
Universidad Nacional de La Plata (UNLP): SeDiCI (Servicio de Difusión de la Creación Intelectual) |
op_collection_id |
ftunivlaplata |
language |
Spanish |
topic |
Ciencias Informáticas Inteligencia Artificial WEKA ecología del paisaje Data mining |
spellingShingle |
Ciencias Informáticas Inteligencia Artificial WEKA ecología del paisaje Data mining Zàrate, Marcos Lewis, Mirtha Noemí Estimación del plano anestésico en elefante marinos del sur utilizando técnicas de Machine Learning |
topic_facet |
Ciencias Informáticas Inteligencia Artificial WEKA ecología del paisaje Data mining |
description |
Prediction systems are techniques that build and study new forecasts through a branch of the artificial intelligence called Machine Learning. In this work we intend to estimate the time that remains anesthetized an southern elephant seal to which you have applied a combination of drugs (Zoletil®), the fundamental objective of anesthesia is to avoid risky situations to researchers studying this species. To know these times data mining techniques and algorithms used particular classification algorithms were compared J4.8, SMO, Random Tree, NBTree y Naïve Bayes with data mining tool Weka and a data set containing the records of 96 individuals undergoing anesthesia procedure. It is concluded that after tests Random Tree was the classification algorithm that best responded, making this an accuracy of 98.79%. XIII Workshop Bases de datos y Minería de Datos (WBDMD). Red de Universidades con Carreras en Informática (RedUNCI) |
format |
Conference Object |
author |
Zàrate, Marcos Lewis, Mirtha Noemí |
author_facet |
Zàrate, Marcos Lewis, Mirtha Noemí |
author_sort |
Zàrate, Marcos |
title |
Estimación del plano anestésico en elefante marinos del sur utilizando técnicas de Machine Learning |
title_short |
Estimación del plano anestésico en elefante marinos del sur utilizando técnicas de Machine Learning |
title_full |
Estimación del plano anestésico en elefante marinos del sur utilizando técnicas de Machine Learning |
title_fullStr |
Estimación del plano anestésico en elefante marinos del sur utilizando técnicas de Machine Learning |
title_full_unstemmed |
Estimación del plano anestésico en elefante marinos del sur utilizando técnicas de Machine Learning |
title_sort |
estimación del plano anestésico en elefante marinos del sur utilizando técnicas de machine learning |
publishDate |
2016 |
url |
http://hdl.handle.net/10915/56749 |
long_lat |
ENVELOPE(-55.167,-55.167,-61.167,-61.167) ENVELOPE(-61.250,-61.250,-62.783,-62.783) |
geographic |
Elefante Plano |
geographic_facet |
Elefante Plano |
genre |
Elephant Seal Southern Elephant Seal |
genre_facet |
Elephant Seal Southern Elephant Seal |
op_relation |
XXII Congreso Argentino de Ciencias de la Computación (CACIC 2016). http://sedici.unlp.edu.ar/handle/10915/55718 |
op_rights |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
op_rightsnorm |
CC-BY-NC-SA |
_version_ |
1766401175038459904 |