Tectonic-magmatic controls on volcanism, rifting, and volatile release

This dissertation examines the interplay between tectonic and magmatic processes that influence the nature of volcanically active regions. In particular, I address how faulting, fluid transport, and magma intrusion interact in a variety of settings, including continental rifts, large igneous provinc...

Full description

Bibliographic Details
Main Author: Muirhead, James
Other Authors: Kattenhorn, Simon
Format: Text
Language:English
Published: 2016
Subjects:
Online Access:http://digital.lib.uidaho.edu/cdm/ref/collection/etd/id/1511
id ftunividahodc:oai:digital.lib.uidaho.edu:etd/1511
record_format openpolar
spelling ftunividahodc:oai:digital.lib.uidaho.edu:etd/1511 2023-11-12T04:02:10+01:00 Tectonic-magmatic controls on volcanism, rifting, and volatile release Muirhead, James Kattenhorn, Simon 2016 PDF http://digital.lib.uidaho.edu/cdm/ref/collection/etd/id/1511 en eng Muirhead_idaho_0089E_10919 http://digital.lib.uidaho.edu/cdm/ref/collection/etd/id/1511 http://rightsstatements.org/vocab/InC-EDU/1.0/ continental rifting dike fault large igneous province magmatic volatile volcano Geology Text 2016 ftunividahodc 2023-10-27T10:31:22Z This dissertation examines the interplay between tectonic and magmatic processes that influence the nature of volcanically active regions. In particular, I address how faulting, fluid transport, and magma intrusion interact in a variety of settings, including continental rifts, large igneous provinces (LIPs), and monogenetic volcanic fields. In the East African Rift (EAR), I combine structural measurements and field observations with geochronology, geochemistry, and seismicity data to investigate how continental breakup initiates and evolves. Analyses of volcanic cone lineaments illustrate variations in the geometries and distributions of dike intrusions along the rift. In early stage basins (<10 Ma), upper crustal dikes are confined to transfer zones – then, as rifting progresses (>10 Ma), dikes begin to accommodate extension along the entire length of the basin. Measurements of diffuse gas flux in the EAR demonstrate that significant volumes of magmatic CO2 (>4 Mt yr-1) are rising along faults from upper mantle/lower crustal magma bodies. Over the entire EAR, this tectonic degassing (~71±33 Mt yr-1) contributes significantly to Earth’s natural CO2 budget. Moreover, the release of magmatic volatiles assists strain localization and the development of new rift segmentation within existing half-graben depressions. Newly developing segments become kinematically linked with existing rift segments through the reactivation of rift-oblique basement fabrics. Resulting transverse faults postdate rift-parallel fault systems, indicating that preexisting weaknesses play a critical role at all stages of rift development. A regional synthesis of sill-fed dikes of the Ferrar LIP, Antarctica, and field and remote-sensing analysis of the Hopi Buttes volcanic field, Arizona, highlights the role of interconnected dike-sill systems in feeding eruptions. Measurements reveal a previously unrecognized feeder system to LIP eruptions––analogous to a “cracked lid” atop a sill network––that may be the archetypal model for LIPs ... Text Antarc* Antarctica University of Idaho Library: Digital Initiatives
institution Open Polar
collection University of Idaho Library: Digital Initiatives
op_collection_id ftunividahodc
language English
topic continental rifting
dike
fault
large igneous province
magmatic volatile
volcano
Geology
spellingShingle continental rifting
dike
fault
large igneous province
magmatic volatile
volcano
Geology
Muirhead, James
Tectonic-magmatic controls on volcanism, rifting, and volatile release
topic_facet continental rifting
dike
fault
large igneous province
magmatic volatile
volcano
Geology
description This dissertation examines the interplay between tectonic and magmatic processes that influence the nature of volcanically active regions. In particular, I address how faulting, fluid transport, and magma intrusion interact in a variety of settings, including continental rifts, large igneous provinces (LIPs), and monogenetic volcanic fields. In the East African Rift (EAR), I combine structural measurements and field observations with geochronology, geochemistry, and seismicity data to investigate how continental breakup initiates and evolves. Analyses of volcanic cone lineaments illustrate variations in the geometries and distributions of dike intrusions along the rift. In early stage basins (<10 Ma), upper crustal dikes are confined to transfer zones – then, as rifting progresses (>10 Ma), dikes begin to accommodate extension along the entire length of the basin. Measurements of diffuse gas flux in the EAR demonstrate that significant volumes of magmatic CO2 (>4 Mt yr-1) are rising along faults from upper mantle/lower crustal magma bodies. Over the entire EAR, this tectonic degassing (~71±33 Mt yr-1) contributes significantly to Earth’s natural CO2 budget. Moreover, the release of magmatic volatiles assists strain localization and the development of new rift segmentation within existing half-graben depressions. Newly developing segments become kinematically linked with existing rift segments through the reactivation of rift-oblique basement fabrics. Resulting transverse faults postdate rift-parallel fault systems, indicating that preexisting weaknesses play a critical role at all stages of rift development. A regional synthesis of sill-fed dikes of the Ferrar LIP, Antarctica, and field and remote-sensing analysis of the Hopi Buttes volcanic field, Arizona, highlights the role of interconnected dike-sill systems in feeding eruptions. Measurements reveal a previously unrecognized feeder system to LIP eruptions––analogous to a “cracked lid” atop a sill network––that may be the archetypal model for LIPs ...
author2 Kattenhorn, Simon
format Text
author Muirhead, James
author_facet Muirhead, James
author_sort Muirhead, James
title Tectonic-magmatic controls on volcanism, rifting, and volatile release
title_short Tectonic-magmatic controls on volcanism, rifting, and volatile release
title_full Tectonic-magmatic controls on volcanism, rifting, and volatile release
title_fullStr Tectonic-magmatic controls on volcanism, rifting, and volatile release
title_full_unstemmed Tectonic-magmatic controls on volcanism, rifting, and volatile release
title_sort tectonic-magmatic controls on volcanism, rifting, and volatile release
publishDate 2016
url http://digital.lib.uidaho.edu/cdm/ref/collection/etd/id/1511
genre Antarc*
Antarctica
genre_facet Antarc*
Antarctica
op_relation Muirhead_idaho_0089E_10919
http://digital.lib.uidaho.edu/cdm/ref/collection/etd/id/1511
op_rights http://rightsstatements.org/vocab/InC-EDU/1.0/
_version_ 1782333818739359744