Pyridine assisted CO₂ reduction to methanol at high pressure

Significant research efforts have been directed towards exploring electrocatalysts for the selective reduction of CO₂ to fuels such as methanol. Bocarsly et al (Princeton University) have recently reported the use of aromatic amines (e.g. pyridine (C₅H₅N)) as electrocatalysts in aqueous electrolytes...

Full description

Bibliographic Details
Main Author: Touhami, Dalila
Other Authors: Rybchenko, S. I., Haywood, S. K. (Stephanie K.)
Format: Thesis
Language:English
Published: 2015
Subjects:
Online Access:https://hull-repository.worktribe.com/file/4220932/1/Thesis
https://hull-repository.worktribe.com/output/4220932
id ftunivhullir:oai:hull-repository.worktribe.com:4220932
record_format openpolar
spelling ftunivhullir:oai:hull-repository.worktribe.com:4220932 2024-09-15T18:01:42+00:00 Pyridine assisted CO₂ reduction to methanol at high pressure Touhami, Dalila Rybchenko, S. I. Haywood, S. K. (Stephanie K.) 2015-09-01 https://hull-repository.worktribe.com/file/4220932/1/Thesis https://hull-repository.worktribe.com/output/4220932 English eng https://hull-repository.worktribe.com/output/4220932 https://hull-repository.worktribe.com/file/4220932/1/Thesis openAccess Engineering Thesis publishedVersion 2015 ftunivhullir 2024-07-15T14:12:00Z Significant research efforts have been directed towards exploring electrocatalysts for the selective reduction of CO₂ to fuels such as methanol. Bocarsly et al (Princeton University) have recently reported the use of aromatic amines (e.g. pyridine (C₅H₅N)) as electrocatalysts in aqueous electrolytes for the reduction of CO₂ at low overpotentials (50-150 mV). Importantly, the CO₂-pyridine reduction process was claimed to selectively produce methanol with Faradaic efficiencies of ~100% on p-GaP electrode and 22-30% on Pt and Pd electrodes. Moreover, the initially proposed mechanism based on a radical intermediate interaction with CO₂ as a key step toward the production of methanol was subsequently disproved. In this project, methanol formation by the CO₂-pyridine (C₅H₅N) system was assessed by conducting electrolysis under various conditions at platinum electrodes. High pressure CO₂ was used with the aim of increasing the methanol yield. In the course of the present study, the bulk electrolysis confirmed the methanol production at 1 bar and at 55bar of CO₂ in the presence of pyridine. However, the methanol yield was found to be persistently limited to sub-ppm level (<1ppm) under all conditions investigated. The observed methanol yield limitation could not be overcome by the electrode reactivation techniques used. Moreover, the methanol formation seemed unaffected by the current density or the biasing mode. This was an indication of the independence of methanol production from the charge transfer on the electrode. In agreement with these observations, analysis of the voltammetric data supported by simulation revealed that the CO₂-pyridine reduction system is mainly pyridinium assisted molecular hydrogen production under all conditions investigated. In particular, protonated pyridine (C₅H₅N) ‘pyridinium’ was confirmed to behave as a weak acid on platinum. It was found that CO₂ is merely a proton source of pyridine reprotonation via the hydration reaction followed by carbonic acid dissociation. The reprotonation ... Thesis Carbonic acid University of Hull: Repository@Hull
institution Open Polar
collection University of Hull: Repository@Hull
op_collection_id ftunivhullir
language English
topic Engineering
spellingShingle Engineering
Touhami, Dalila
Pyridine assisted CO₂ reduction to methanol at high pressure
topic_facet Engineering
description Significant research efforts have been directed towards exploring electrocatalysts for the selective reduction of CO₂ to fuels such as methanol. Bocarsly et al (Princeton University) have recently reported the use of aromatic amines (e.g. pyridine (C₅H₅N)) as electrocatalysts in aqueous electrolytes for the reduction of CO₂ at low overpotentials (50-150 mV). Importantly, the CO₂-pyridine reduction process was claimed to selectively produce methanol with Faradaic efficiencies of ~100% on p-GaP electrode and 22-30% on Pt and Pd electrodes. Moreover, the initially proposed mechanism based on a radical intermediate interaction with CO₂ as a key step toward the production of methanol was subsequently disproved. In this project, methanol formation by the CO₂-pyridine (C₅H₅N) system was assessed by conducting electrolysis under various conditions at platinum electrodes. High pressure CO₂ was used with the aim of increasing the methanol yield. In the course of the present study, the bulk electrolysis confirmed the methanol production at 1 bar and at 55bar of CO₂ in the presence of pyridine. However, the methanol yield was found to be persistently limited to sub-ppm level (<1ppm) under all conditions investigated. The observed methanol yield limitation could not be overcome by the electrode reactivation techniques used. Moreover, the methanol formation seemed unaffected by the current density or the biasing mode. This was an indication of the independence of methanol production from the charge transfer on the electrode. In agreement with these observations, analysis of the voltammetric data supported by simulation revealed that the CO₂-pyridine reduction system is mainly pyridinium assisted molecular hydrogen production under all conditions investigated. In particular, protonated pyridine (C₅H₅N) ‘pyridinium’ was confirmed to behave as a weak acid on platinum. It was found that CO₂ is merely a proton source of pyridine reprotonation via the hydration reaction followed by carbonic acid dissociation. The reprotonation ...
author2 Rybchenko, S. I.
Haywood, S. K. (Stephanie K.)
format Thesis
author Touhami, Dalila
author_facet Touhami, Dalila
author_sort Touhami, Dalila
title Pyridine assisted CO₂ reduction to methanol at high pressure
title_short Pyridine assisted CO₂ reduction to methanol at high pressure
title_full Pyridine assisted CO₂ reduction to methanol at high pressure
title_fullStr Pyridine assisted CO₂ reduction to methanol at high pressure
title_full_unstemmed Pyridine assisted CO₂ reduction to methanol at high pressure
title_sort pyridine assisted co₂ reduction to methanol at high pressure
publishDate 2015
url https://hull-repository.worktribe.com/file/4220932/1/Thesis
https://hull-repository.worktribe.com/output/4220932
genre Carbonic acid
genre_facet Carbonic acid
op_relation https://hull-repository.worktribe.com/output/4220932
https://hull-repository.worktribe.com/file/4220932/1/Thesis
op_rights openAccess
_version_ 1810438786364997632