The Nusfjord exhumed earthquake source (Lofoten, Norway): deep crustal seismicity driven by bending of the lower plate during continental collision

The origin of earthquakes in the lower crust at depth of 20-40 km, where dominantly ductile deformation is expected, is highly debated. Exhumed networks of lower crustal coeval pseudotachylytes (quenched frictional melt produced during seismic slip) and mylonites (produced during the post- and inter...

Full description

Bibliographic Details
Main Authors: Menegon, Luca, Campbell, Lucy, Fagereng, Åke, Pennacchioni, Giorgio
Format: Other/Unknown Material
Language:English
Published: 2020
Subjects:
Online Access:https://hull-repository.worktribe.com/file/3752753/1/Published%20Abstract
https://hull-repository.worktribe.com/output/3752753
https://doi.org/10.5194/egusphere-egu2020-7129
Description
Summary:The origin of earthquakes in the lower crust at depth of 20-40 km, where dominantly ductile deformation is expected, is highly debated. Exhumed networks of lower crustal coeval pseudotachylytes (quenched frictional melt produced during seismic slip) and mylonites (produced during the post- and interseismic viscous creep) provide a snapshot of the earthquake cycle at anomalously deep conditions in the crust. Such natural laboratories offer the opportunity to investigate the origin and the tectonic setting of lower crustal earthquakes.The Nusfjord East shear zone network (Lofoten, northern Norway) represents an exhumed lower crustal earthquake source, where mutually overprinting mylonites and pseudotachylytes record the interplay between coseismic slip and viscous creep (Menegon et al., 2017; Campbell and Menegon, 2019). The network is well exposed over an area of 4 km2 and consists of three main intersecting sets of ductile shear zones ranging in width from 1 cm to 1 m, which commonly nucleate on former pseudotachylyte veins. Mutual crosscutting relationships indicate that the three sets were active at the same time. Amphibole-plagioclase geothermobarometry yields consistent P-T estimates in all three sets (700-750 °C, 0.7-0.8 GPa). The shear zones separate relatively undeformed blocks of anorthosite that contain pristine pseudotachylyte fault veins. These pseudotachylytes link adjacent or intersecting shear zones, and are interpreted as fossil seismogenic faults representing earthquake nucleation as a transient consequence of ongoing, localised aseismic creep along the shear zones (Campbell et al., under review).The coeval activity of the three shear zone sets is consistent with a local extensional setting, with a bulk vertical shortening and a horizontal NNW-SSE extension. This extension direction is subparallel to the convergence direction between Baltica and Laurentia during the Caledonian Orogeny, and with the dominant direction of nappe thrusting in the Scandinavian Caledonides. 40Ar‐39Ar dating of ...