Spawning Migration of the European Eel

Teleost fishes regulate the osmotic concentration of their body fluids at about 30–40% of the level of oceanic sea water, as do most vertebrates (including ourselves!). This process is known as osmoregulation, which will be briefly summarized following the outline given in Rankin and Davenport (1981...

Full description

Bibliographic Details
Main Author: Rankin, J. Cliff
Other Authors: van den Thillart, Guido, Dufour, Sylvie
Format: Book Part
Language:unknown
Published: Springer Netherlands 2008
Subjects:
Online Access:http://eprints.hud.ac.uk/id/eprint/6351/
https://doi.org/10.1007/978-1-4020-9095-0_6
id ftunivhudders:oai:eprints.hud.ac.uk:6351
record_format openpolar
spelling ftunivhudders:oai:eprints.hud.ac.uk:6351 2023-05-15T16:08:42+02:00 Spawning Migration of the European Eel Rankin, J. Cliff van den Thillart, Guido Dufour, Sylvie Rankin, J. Cliff 2008-12-18 http://eprints.hud.ac.uk/id/eprint/6351/ https://doi.org/10.1007/978-1-4020-9095-0_6 unknown Springer Netherlands Rankin, J. Cliff (2008) Spawning Migration of the European Eel. In: Spawning Migration of the European Eel. Fish & Fisheries Series, 30 . Springer Netherlands, London, UK, pp. 129-145. ISBN 978-1-4020-9095-0 (Online) Q Science (General) SH Aquaculture. Fisheries. Angling QL Zoology Book Chapter NonPeerReviewed 2008 ftunivhudders https://doi.org/10.1007/978-1-4020-9095-0_6 2022-12-09T10:06:59Z Teleost fishes regulate the osmotic concentration of their body fluids at about 30–40% of the level of oceanic sea water, as do most vertebrates (including ourselves!). This process is known as osmoregulation, which will be briefly summarized following the outline given in Rankin and Davenport (1981), which uses the eel as an example. The most primitive chordates, the hagfish, Family Myxinidae, have blood isoosmotic with sea water and are confined to the marine environment, where the phylum Chordata (which includes the vertebrates) must have originated. Later vertebrates are thought to have evolved from ancestors who lived in freshwater, which they were only able to colonize by reducing their blood osmotic concentration to minimize two problems; osmotic entry of water and diffusional loss of salts, which are serious problems as fish gills must have a large surface area and thin epithelium to facilitate oxygen uptake from the water. In marine teleost fishes blood composition is similar to that of fishes in freshwater, resulting in the opposite problems; osmotic entry of water and diffusional loss of salts. In the face of these dissipative forces homeostasis is maintained by active processes in the gills, kidneys and guts. Most teleost species only possess the mechanisms to osmoregulate (and therefore survive) in either sea water or freshwater; they are said to be stenohaline. A small minority are euryhaline, being able to move between fresh and salt water either at certain stages in their life cycle (e.g. salmon) or at any time (e.g. eels, flounder). The basic features of eel osmoregulation have long been known but in recent years there has been a resurgence of interest in its endocrine control mechanisms. The functions of the osmoregulatory organs will be briefly described, followed an overview of the hormones implicated and finally a more detailed discussion of their role in the eel life cycle. Book Part European eel University of Huddersfield Repository 129 145 Dordrecht
institution Open Polar
collection University of Huddersfield Repository
op_collection_id ftunivhudders
language unknown
topic Q Science (General)
SH Aquaculture. Fisheries. Angling
QL Zoology
spellingShingle Q Science (General)
SH Aquaculture. Fisheries. Angling
QL Zoology
Rankin, J. Cliff
Spawning Migration of the European Eel
topic_facet Q Science (General)
SH Aquaculture. Fisheries. Angling
QL Zoology
description Teleost fishes regulate the osmotic concentration of their body fluids at about 30–40% of the level of oceanic sea water, as do most vertebrates (including ourselves!). This process is known as osmoregulation, which will be briefly summarized following the outline given in Rankin and Davenport (1981), which uses the eel as an example. The most primitive chordates, the hagfish, Family Myxinidae, have blood isoosmotic with sea water and are confined to the marine environment, where the phylum Chordata (which includes the vertebrates) must have originated. Later vertebrates are thought to have evolved from ancestors who lived in freshwater, which they were only able to colonize by reducing their blood osmotic concentration to minimize two problems; osmotic entry of water and diffusional loss of salts, which are serious problems as fish gills must have a large surface area and thin epithelium to facilitate oxygen uptake from the water. In marine teleost fishes blood composition is similar to that of fishes in freshwater, resulting in the opposite problems; osmotic entry of water and diffusional loss of salts. In the face of these dissipative forces homeostasis is maintained by active processes in the gills, kidneys and guts. Most teleost species only possess the mechanisms to osmoregulate (and therefore survive) in either sea water or freshwater; they are said to be stenohaline. A small minority are euryhaline, being able to move between fresh and salt water either at certain stages in their life cycle (e.g. salmon) or at any time (e.g. eels, flounder). The basic features of eel osmoregulation have long been known but in recent years there has been a resurgence of interest in its endocrine control mechanisms. The functions of the osmoregulatory organs will be briefly described, followed an overview of the hormones implicated and finally a more detailed discussion of their role in the eel life cycle.
author2 van den Thillart, Guido
Dufour, Sylvie
Rankin, J. Cliff
format Book Part
author Rankin, J. Cliff
author_facet Rankin, J. Cliff
author_sort Rankin, J. Cliff
title Spawning Migration of the European Eel
title_short Spawning Migration of the European Eel
title_full Spawning Migration of the European Eel
title_fullStr Spawning Migration of the European Eel
title_full_unstemmed Spawning Migration of the European Eel
title_sort spawning migration of the european eel
publisher Springer Netherlands
publishDate 2008
url http://eprints.hud.ac.uk/id/eprint/6351/
https://doi.org/10.1007/978-1-4020-9095-0_6
genre European eel
genre_facet European eel
op_relation Rankin, J. Cliff (2008) Spawning Migration of the European Eel. In: Spawning Migration of the European Eel. Fish & Fisheries Series, 30 . Springer Netherlands, London, UK, pp. 129-145. ISBN 978-1-4020-9095-0 (Online)
op_doi https://doi.org/10.1007/978-1-4020-9095-0_6
container_start_page 129
op_container_end_page 145
op_publisher_place Dordrecht
_version_ 1766404717465829376