Proteomic analysis of oyster larvae reveals molecular mechanism of ocean acidification and multiple stressor effects

The increase in carbon dioxide emissions due to human activities has led to drastic variations in global climate. In addition to global warming and extreme weather patterns, the high CO2 levels have been leading to progressive ocean acidification. Compounded with other climate change related stresso...

Full description

Bibliographic Details
Main Author: Ramadoss, Dineshram
Format: Doctoral or Postdoctoral Thesis
Language:English
Published: The University of Hong Kong (Pokfulam, Hong Kong) 2014
Subjects:
Online Access:https://doi.org/10.5353/th_b5317012
http://hdl.handle.net/10722/219901
id ftunivhongkonghu:oai:hub.hku.hk:10722/219901
record_format openpolar
spelling ftunivhongkonghu:oai:hub.hku.hk:10722/219901 2023-05-15T15:59:04+02:00 Proteomic analysis of oyster larvae reveals molecular mechanism of ocean acidification and multiple stressor effects Ramadoss, Dineshram 2014 https://doi.org/10.5353/th_b5317012 http://hdl.handle.net/10722/219901 eng eng The University of Hong Kong (Pokfulam, Hong Kong) HKU Theses Online (HKUTO) Ramadoss, D. (2014). Proteomic analysis of oyster larvae reveals molecular mechanism of ocean acidification and multiple stressor effects. (Thesis). University of Hong Kong, Pokfulam, Hong Kong SAR. Retrieved from http://dx.doi.org/10.5353/th_b5317012 doi:10.5353/th_b5317012 b5317012 http://hdl.handle.net/10722/219901 The author retains all proprietary rights, (such as patent rights) and the right to use in future works. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. CC-BY-NC-ND Ocean acidification Oysters - Effect of stress on PG_Thesis 2014 ftunivhongkonghu https://doi.org/10.5353/th_b5317012 2023-01-14T16:10:38Z The increase in carbon dioxide emissions due to human activities has led to drastic variations in global climate. In addition to global warming and extreme weather patterns, the high CO2 levels have been leading to progressive ocean acidification. Compounded with other climate change related stressors, ocean acidification will hinder the ability of marine organisms to adapt to the ensuing changes and might affect human dependence on oceans as a source of food. Most marine organisms have complex life cycles, involving metamorphosis from larval to adult forms. In the early stages of life, oysters have calcium carbonate shells that are particularly sensitive to low pH, and the rapid climatic changes can compromise their metamorphosis. High temperature, low salinity and low pH resulting from ocean acidification are detrimental to both native and cultivated oyster populations. Although mechanistic studies to understand the tolerance responses of closely related species would be significant in this context, none have been reported to date. Therefore, this thesis aims to reveal the mechanisms that distinguish the “winners” from the “losers” among the selected aquatic species of commercial importance, in withstanding the stress induced by climate change. The present study employed molecular approaches to evaluate the interactive and cumulative effects of multiple stressors on large-scale cultures of pediveliger larvae from two oyster populations, Crassostrea hongkongensis and Crassostrea gigas. The study undertook transcriptomic and proteomic profiling of changes induced by ocean acidification in the larvae. The results revealed that oyster larvae could adopt an energy ‘trade-off’ strategy through metabolic suppression and adjust cell signalling pathways to overcome the stress induced by ocean acidification. Information from the oyster genome database facilitated the shotgun proteomics investigations on oyster larvae remarkably revealed over 1350 proteins in both the species. The study identified species- and ... Doctoral or Postdoctoral Thesis Crassostrea gigas Ocean acidification University of Hong Kong: HKU Scholars Hub
institution Open Polar
collection University of Hong Kong: HKU Scholars Hub
op_collection_id ftunivhongkonghu
language English
topic Ocean acidification
Oysters - Effect of stress on
spellingShingle Ocean acidification
Oysters - Effect of stress on
Ramadoss, Dineshram
Proteomic analysis of oyster larvae reveals molecular mechanism of ocean acidification and multiple stressor effects
topic_facet Ocean acidification
Oysters - Effect of stress on
description The increase in carbon dioxide emissions due to human activities has led to drastic variations in global climate. In addition to global warming and extreme weather patterns, the high CO2 levels have been leading to progressive ocean acidification. Compounded with other climate change related stressors, ocean acidification will hinder the ability of marine organisms to adapt to the ensuing changes and might affect human dependence on oceans as a source of food. Most marine organisms have complex life cycles, involving metamorphosis from larval to adult forms. In the early stages of life, oysters have calcium carbonate shells that are particularly sensitive to low pH, and the rapid climatic changes can compromise their metamorphosis. High temperature, low salinity and low pH resulting from ocean acidification are detrimental to both native and cultivated oyster populations. Although mechanistic studies to understand the tolerance responses of closely related species would be significant in this context, none have been reported to date. Therefore, this thesis aims to reveal the mechanisms that distinguish the “winners” from the “losers” among the selected aquatic species of commercial importance, in withstanding the stress induced by climate change. The present study employed molecular approaches to evaluate the interactive and cumulative effects of multiple stressors on large-scale cultures of pediveliger larvae from two oyster populations, Crassostrea hongkongensis and Crassostrea gigas. The study undertook transcriptomic and proteomic profiling of changes induced by ocean acidification in the larvae. The results revealed that oyster larvae could adopt an energy ‘trade-off’ strategy through metabolic suppression and adjust cell signalling pathways to overcome the stress induced by ocean acidification. Information from the oyster genome database facilitated the shotgun proteomics investigations on oyster larvae remarkably revealed over 1350 proteins in both the species. The study identified species- and ...
format Doctoral or Postdoctoral Thesis
author Ramadoss, Dineshram
author_facet Ramadoss, Dineshram
author_sort Ramadoss, Dineshram
title Proteomic analysis of oyster larvae reveals molecular mechanism of ocean acidification and multiple stressor effects
title_short Proteomic analysis of oyster larvae reveals molecular mechanism of ocean acidification and multiple stressor effects
title_full Proteomic analysis of oyster larvae reveals molecular mechanism of ocean acidification and multiple stressor effects
title_fullStr Proteomic analysis of oyster larvae reveals molecular mechanism of ocean acidification and multiple stressor effects
title_full_unstemmed Proteomic analysis of oyster larvae reveals molecular mechanism of ocean acidification and multiple stressor effects
title_sort proteomic analysis of oyster larvae reveals molecular mechanism of ocean acidification and multiple stressor effects
publisher The University of Hong Kong (Pokfulam, Hong Kong)
publishDate 2014
url https://doi.org/10.5353/th_b5317012
http://hdl.handle.net/10722/219901
genre Crassostrea gigas
Ocean acidification
genre_facet Crassostrea gigas
Ocean acidification
op_relation HKU Theses Online (HKUTO)
Ramadoss, D. (2014). Proteomic analysis of oyster larvae reveals molecular mechanism of ocean acidification and multiple stressor effects. (Thesis). University of Hong Kong, Pokfulam, Hong Kong SAR. Retrieved from http://dx.doi.org/10.5353/th_b5317012
doi:10.5353/th_b5317012
b5317012
http://hdl.handle.net/10722/219901
op_rights The author retains all proprietary rights, (such as patent rights) and the right to use in future works.
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
op_rightsnorm CC-BY-NC-ND
op_doi https://doi.org/10.5353/th_b5317012
_version_ 1766394856326823936