Retrieval of sea ice drift in the Fram Strait based on data from Chinese satellite HaiYang (HY-1D)
Melting of sea ice in the Arctic has accelerated due to global warming. The Fram Strait (FS) serves as a crucial pathway for sea ice export from the Arctic to the North Atlantic Ocean. Monitoring sea ice drift (SID) in the FS provides insight into how Arctic sea ice responds to the climate change. T...
Main Authors: | , , , , , , |
---|---|
Other Authors: | , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
Copernicus Publications
2024
|
Subjects: | |
Online Access: | http://hdl.handle.net/10138/574498 |
_version_ | 1821815232307134464 |
---|---|
author | Lu, Dunwang Liu, Jianqiang Shi, Lijian Zeng, Tao Cheng, Bin Wu, Suhui Wang, Manman |
author2 | Ilmatieteen laitos Finnish Meteorological Institute orcid:0000-0001-8156-8412 |
author_facet | Lu, Dunwang Liu, Jianqiang Shi, Lijian Zeng, Tao Cheng, Bin Wu, Suhui Wang, Manman |
author_sort | Lu, Dunwang |
collection | HELDA – University of Helsinki Open Repository |
description | Melting of sea ice in the Arctic has accelerated due to global warming. The Fram Strait (FS) serves as a crucial pathway for sea ice export from the Arctic to the North Atlantic Ocean. Monitoring sea ice drift (SID) in the FS provides insight into how Arctic sea ice responds to the climate change. The SID has been retrieved from Sentinel-1 synthetic aperture radar (SAR), Advanced Very High Resolution Radiometer (AVHRR), Moderate Resolution Imaging Spectroradiometer (MODIS), and Advanced Microwave Scanning Radiometer for EOS (AMSR-E), and further exploration is needed for the retrieval of SID using optical imagery. In this paper, we retrieve SID in the FS using the Chinese HaiYang1-D (HY-1D) satellite equipped with the Coastal Zone Imager (CZI). A multi-template matching technique is employed to calculate the cross-correlation, and subpixel estimation is used to locate displacement vectors from the cross-correlation matrix. The dataset covering March to May 2021 was divided into hourly and daily intervals for analysis, and validation was performed using Copernicus Marine Environment Monitoring Service (CMEMS) SAR-based product and International Arctic Buoy Programme (IABP) buoy. A comparison with the CMEMS SID product revealed a high correlation with the daily interval dataset; however, due to the spatial and temporal variability in the sea ice motion, differences are observed with the hourly interval dataset. Additionally, validation with the IABP buoys yielded a velocity bias of −0.005 m s−1 and RMSE of 0.031 m s−1 for the daily interval dataset, along with a flow direction bias of 0.002 rad and RMSE of 0.009 rad, respectively. For the hourly interval dataset, the velocity bias was negligible (0 m s−1), with a RMSE of 0.036 m s−1, while the flow direction bias was 0.003 rad, with a RMSE of 0.010 rad. In addition, during the validation with buoys, we found that the accuracy of retrieving the SID flow direction is distinctly interrelated with the sea ice displacement. |
format | Article in Journal/Newspaper |
genre | Arctic Arktinen alue Climate change Fram Strait Global warming North Atlantic Sea ice |
genre_facet | Arctic Arktinen alue Climate change Fram Strait Global warming North Atlantic Sea ice |
geographic | Arctic |
geographic_facet | Arctic |
id | ftunivhelsihelda:oai:helda.helsinki.fi:10138/574498 |
institution | Open Polar |
language | English |
op_collection_id | ftunivhelsihelda |
op_relation | Cryosphere 10.5194/tc-18-1419-2024 1994-0416 1994-0424 3 18 100529 http://hdl.handle.net/10138/574498 URN:NBN:fi-fe2024041618232 |
op_rights | CC BY 4.0 |
publishDate | 2024 |
publisher | Copernicus Publications |
record_format | openpolar |
spelling | ftunivhelsihelda:oai:helda.helsinki.fi:10138/574498 2025-01-16T20:21:03+00:00 Retrieval of sea ice drift in the Fram Strait based on data from Chinese satellite HaiYang (HY-1D) Lu, Dunwang Liu, Jianqiang Shi, Lijian Zeng, Tao Cheng, Bin Wu, Suhui Wang, Manman Ilmatieteen laitos Finnish Meteorological Institute orcid:0000-0001-8156-8412 2024-04-16T09:34:37Z 1419-1441 application/pdf http://hdl.handle.net/10138/574498 en eng Copernicus Publications Cryosphere 10.5194/tc-18-1419-2024 1994-0416 1994-0424 3 18 100529 http://hdl.handle.net/10138/574498 URN:NBN:fi-fe2024041618232 CC BY 4.0 arctic region melting climate North Sea ice cover jää ilmastonmuutokset meret merijää kaukokartoitus arktinen alue sulaminen ilmasto Pohjanmeri jääpeite ice climate changes seas sea ice remote sensing A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä A1 Journal article (refereed), original research 2024 ftunivhelsihelda 2024-04-17T14:29:09Z Melting of sea ice in the Arctic has accelerated due to global warming. The Fram Strait (FS) serves as a crucial pathway for sea ice export from the Arctic to the North Atlantic Ocean. Monitoring sea ice drift (SID) in the FS provides insight into how Arctic sea ice responds to the climate change. The SID has been retrieved from Sentinel-1 synthetic aperture radar (SAR), Advanced Very High Resolution Radiometer (AVHRR), Moderate Resolution Imaging Spectroradiometer (MODIS), and Advanced Microwave Scanning Radiometer for EOS (AMSR-E), and further exploration is needed for the retrieval of SID using optical imagery. In this paper, we retrieve SID in the FS using the Chinese HaiYang1-D (HY-1D) satellite equipped with the Coastal Zone Imager (CZI). A multi-template matching technique is employed to calculate the cross-correlation, and subpixel estimation is used to locate displacement vectors from the cross-correlation matrix. The dataset covering March to May 2021 was divided into hourly and daily intervals for analysis, and validation was performed using Copernicus Marine Environment Monitoring Service (CMEMS) SAR-based product and International Arctic Buoy Programme (IABP) buoy. A comparison with the CMEMS SID product revealed a high correlation with the daily interval dataset; however, due to the spatial and temporal variability in the sea ice motion, differences are observed with the hourly interval dataset. Additionally, validation with the IABP buoys yielded a velocity bias of −0.005 m s−1 and RMSE of 0.031 m s−1 for the daily interval dataset, along with a flow direction bias of 0.002 rad and RMSE of 0.009 rad, respectively. For the hourly interval dataset, the velocity bias was negligible (0 m s−1), with a RMSE of 0.036 m s−1, while the flow direction bias was 0.003 rad, with a RMSE of 0.010 rad. In addition, during the validation with buoys, we found that the accuracy of retrieving the SID flow direction is distinctly interrelated with the sea ice displacement. Article in Journal/Newspaper Arctic Arktinen alue Climate change Fram Strait Global warming North Atlantic Sea ice HELDA – University of Helsinki Open Repository Arctic |
spellingShingle | arctic region melting climate North Sea ice cover jää ilmastonmuutokset meret merijää kaukokartoitus arktinen alue sulaminen ilmasto Pohjanmeri jääpeite ice climate changes seas sea ice remote sensing Lu, Dunwang Liu, Jianqiang Shi, Lijian Zeng, Tao Cheng, Bin Wu, Suhui Wang, Manman Retrieval of sea ice drift in the Fram Strait based on data from Chinese satellite HaiYang (HY-1D) |
title | Retrieval of sea ice drift in the Fram Strait based on data from Chinese satellite HaiYang (HY-1D) |
title_full | Retrieval of sea ice drift in the Fram Strait based on data from Chinese satellite HaiYang (HY-1D) |
title_fullStr | Retrieval of sea ice drift in the Fram Strait based on data from Chinese satellite HaiYang (HY-1D) |
title_full_unstemmed | Retrieval of sea ice drift in the Fram Strait based on data from Chinese satellite HaiYang (HY-1D) |
title_short | Retrieval of sea ice drift in the Fram Strait based on data from Chinese satellite HaiYang (HY-1D) |
title_sort | retrieval of sea ice drift in the fram strait based on data from chinese satellite haiyang (hy-1d) |
topic | arctic region melting climate North Sea ice cover jää ilmastonmuutokset meret merijää kaukokartoitus arktinen alue sulaminen ilmasto Pohjanmeri jääpeite ice climate changes seas sea ice remote sensing |
topic_facet | arctic region melting climate North Sea ice cover jää ilmastonmuutokset meret merijää kaukokartoitus arktinen alue sulaminen ilmasto Pohjanmeri jääpeite ice climate changes seas sea ice remote sensing |
url | http://hdl.handle.net/10138/574498 |