Effects of black carbon mitigation on Arctic climate

We use the ECHAM-HAMMOZ aerosol-climate model to assess the effects of black carbon (BC) mitigation measures on Arctic climate. To this end we constructed several mitigation scenarios that implement all currently existing legislation and then implement further reductions of BC in a successively incr...

Full description

Bibliographic Details
Published in:Atmospheric Chemistry and Physics
Main Authors: Kuhn, Thomas, Kupiainen, Kaarle, Miinalainen, Tuuli, Kokkola, Harri, Paunu, Ville-Veikko, Laakso, Anton, Tonttila, Juha, Van Dingenen, Rita, Kulovesi, Kati, Karvosenoja, Niko, Lehtonen, Kari E.J.
Format: Article in Journal/Newspaper
Language:English
Published: EGU 2022
Subjects:
Online Access:http://hdl.handle.net/10138/338549
https://doi.org/10.5194/acp-20-5527-2020
id ftunivhelsihelda:oai:helda.helsinki.fi:10138/338549
record_format openpolar
spelling ftunivhelsihelda:oai:helda.helsinki.fi:10138/338549 2023-08-20T04:03:03+02:00 Effects of black carbon mitigation on Arctic climate Kuhn, Thomas Kupiainen, Kaarle Miinalainen, Tuuli Kokkola, Harri Paunu, Ville-Veikko Laakso, Anton Tonttila, Juha Van Dingenen, Rita Kulovesi, Kati Karvosenoja, Niko Lehtonen, Kari E.J. 2022-01-13T08:02:23Z application/pdf http://hdl.handle.net/10138/338549 https://doi.org/10.5194/acp-20-5527-2020 eng eng EGU Atmospheric Chemistry and Physics 20 9 (2020) 1680-7316 Kuhn, T., Kupiainen, K., Miinalainen, T., Kokkola, H., Paunu, V.-V., Laakso, A., Tonttila, J., Van Dingenen, R., Kulovesi, K., Karvosenoja, N., and Lehtinen, K.E.J. Effects of black carbon mitigation on Arctic climate, Atmos. Chem. Phys. 20, 5527-5546. https://doi.org/10.5194/acp-20-5527-2020 https://doi.org/10.5194/acp-20-5527-2020 Suomen ympäristökeskus http://hdl.handle.net/10138/338549 CC BY 4.0 openAccess emissions arctic region climate changes decrease (active) climate atmosphere (earth) radiation aerosols climatic effects greenhouse gases climate policy legislation air pollution evaluation climate protection black carbon arctic päästöt arktinen alue ilmastonmuutokset vähentäminen ilmasto ilmakehä säteily aerosolit ilmastovaikutukset kasvihuonekaasut ilmastopolitiikka lainsäädäntö ilman saastuminen arviointi ilmastonsuojelu Article 2022 ftunivhelsihelda https://doi.org/10.5194/acp-20-5527-2020 2023-07-28T06:36:49Z We use the ECHAM-HAMMOZ aerosol-climate model to assess the effects of black carbon (BC) mitigation measures on Arctic climate. To this end we constructed several mitigation scenarios that implement all currently existing legislation and then implement further reductions of BC in a successively increasing global area, starting from the eight member states of the Arctic Council, expanding to its active observer states, then to all observer states, and finally to the entire globe. These scenarios also account for the reduction of the co-emitted organic carbon (OC) and sulfate (SU). We find that, even though the additional BC emission reductions in the member states of the Arctic Council are small, the resulting reductions in Arctic BC mass burdens can be substantial, especially in the lower troposphere close to the surface. This in turn means that reducing BC emissions only in the Arctic Council member states can reduce BC deposition in the Arctic by about 30 % compared to the current legislation, which is about 60 % of what could be achieved if emissions were reduced globally. Emission reductions further south affect Arctic BC concentrations at higher altitudes and thus only have small additional effects on BC deposition in the Arctic. The direct radiative forcing scales fairly well with the total amount of BC emission reduction, independent of the location of the emission source, with a maximum direct radiative forcing in the Arctic of about −0.4 W m−2 for a global BC emission reduction. On the other hand, the Arctic effective radiative forcing due to the BC emission reductions, which accounts for aerosol–cloud interactions, is small compared to the direct aerosol radiative forcing. This happens because BC- and OC-containing particles can act as cloud condensation nuclei, which affects cloud reflectivity and lifetime and counteracts the direct radiative forcing of BC. Additionally, the effective radiative forcing is accompanied by very large uncertainties that originate from the strong natural variability of ... Article in Journal/Newspaper Arctic Arctic Council Arctic Arktinen alue black carbon Helsingfors Universitet: HELDA – Helsingin yliopiston digitaalinen arkisto Arctic Atmospheric Chemistry and Physics 20 9 5527 5546
institution Open Polar
collection Helsingfors Universitet: HELDA – Helsingin yliopiston digitaalinen arkisto
op_collection_id ftunivhelsihelda
language English
topic emissions
arctic region
climate changes
decrease (active)
climate
atmosphere (earth)
radiation
aerosols
climatic effects
greenhouse gases
climate policy
legislation
air pollution
evaluation
climate protection
black carbon
arctic
päästöt
arktinen alue
ilmastonmuutokset
vähentäminen
ilmasto
ilmakehä
säteily
aerosolit
ilmastovaikutukset
kasvihuonekaasut
ilmastopolitiikka
lainsäädäntö
ilman saastuminen
arviointi
ilmastonsuojelu
spellingShingle emissions
arctic region
climate changes
decrease (active)
climate
atmosphere (earth)
radiation
aerosols
climatic effects
greenhouse gases
climate policy
legislation
air pollution
evaluation
climate protection
black carbon
arctic
päästöt
arktinen alue
ilmastonmuutokset
vähentäminen
ilmasto
ilmakehä
säteily
aerosolit
ilmastovaikutukset
kasvihuonekaasut
ilmastopolitiikka
lainsäädäntö
ilman saastuminen
arviointi
ilmastonsuojelu
Kuhn, Thomas
Kupiainen, Kaarle
Miinalainen, Tuuli
Kokkola, Harri
Paunu, Ville-Veikko
Laakso, Anton
Tonttila, Juha
Van Dingenen, Rita
Kulovesi, Kati
Karvosenoja, Niko
Lehtonen, Kari E.J.
Effects of black carbon mitigation on Arctic climate
topic_facet emissions
arctic region
climate changes
decrease (active)
climate
atmosphere (earth)
radiation
aerosols
climatic effects
greenhouse gases
climate policy
legislation
air pollution
evaluation
climate protection
black carbon
arctic
päästöt
arktinen alue
ilmastonmuutokset
vähentäminen
ilmasto
ilmakehä
säteily
aerosolit
ilmastovaikutukset
kasvihuonekaasut
ilmastopolitiikka
lainsäädäntö
ilman saastuminen
arviointi
ilmastonsuojelu
description We use the ECHAM-HAMMOZ aerosol-climate model to assess the effects of black carbon (BC) mitigation measures on Arctic climate. To this end we constructed several mitigation scenarios that implement all currently existing legislation and then implement further reductions of BC in a successively increasing global area, starting from the eight member states of the Arctic Council, expanding to its active observer states, then to all observer states, and finally to the entire globe. These scenarios also account for the reduction of the co-emitted organic carbon (OC) and sulfate (SU). We find that, even though the additional BC emission reductions in the member states of the Arctic Council are small, the resulting reductions in Arctic BC mass burdens can be substantial, especially in the lower troposphere close to the surface. This in turn means that reducing BC emissions only in the Arctic Council member states can reduce BC deposition in the Arctic by about 30 % compared to the current legislation, which is about 60 % of what could be achieved if emissions were reduced globally. Emission reductions further south affect Arctic BC concentrations at higher altitudes and thus only have small additional effects on BC deposition in the Arctic. The direct radiative forcing scales fairly well with the total amount of BC emission reduction, independent of the location of the emission source, with a maximum direct radiative forcing in the Arctic of about −0.4 W m−2 for a global BC emission reduction. On the other hand, the Arctic effective radiative forcing due to the BC emission reductions, which accounts for aerosol–cloud interactions, is small compared to the direct aerosol radiative forcing. This happens because BC- and OC-containing particles can act as cloud condensation nuclei, which affects cloud reflectivity and lifetime and counteracts the direct radiative forcing of BC. Additionally, the effective radiative forcing is accompanied by very large uncertainties that originate from the strong natural variability of ...
format Article in Journal/Newspaper
author Kuhn, Thomas
Kupiainen, Kaarle
Miinalainen, Tuuli
Kokkola, Harri
Paunu, Ville-Veikko
Laakso, Anton
Tonttila, Juha
Van Dingenen, Rita
Kulovesi, Kati
Karvosenoja, Niko
Lehtonen, Kari E.J.
author_facet Kuhn, Thomas
Kupiainen, Kaarle
Miinalainen, Tuuli
Kokkola, Harri
Paunu, Ville-Veikko
Laakso, Anton
Tonttila, Juha
Van Dingenen, Rita
Kulovesi, Kati
Karvosenoja, Niko
Lehtonen, Kari E.J.
author_sort Kuhn, Thomas
title Effects of black carbon mitigation on Arctic climate
title_short Effects of black carbon mitigation on Arctic climate
title_full Effects of black carbon mitigation on Arctic climate
title_fullStr Effects of black carbon mitigation on Arctic climate
title_full_unstemmed Effects of black carbon mitigation on Arctic climate
title_sort effects of black carbon mitigation on arctic climate
publisher EGU
publishDate 2022
url http://hdl.handle.net/10138/338549
https://doi.org/10.5194/acp-20-5527-2020
geographic Arctic
geographic_facet Arctic
genre Arctic
Arctic Council
Arctic
Arktinen alue
black carbon
genre_facet Arctic
Arctic Council
Arctic
Arktinen alue
black carbon
op_relation Atmospheric Chemistry and Physics
20 9 (2020)
1680-7316
Kuhn, T., Kupiainen, K., Miinalainen, T., Kokkola, H., Paunu, V.-V., Laakso, A., Tonttila, J., Van Dingenen, R., Kulovesi, K., Karvosenoja, N., and Lehtinen, K.E.J. Effects of black carbon mitigation on Arctic climate, Atmos. Chem. Phys. 20, 5527-5546. https://doi.org/10.5194/acp-20-5527-2020
https://doi.org/10.5194/acp-20-5527-2020
Suomen ympäristökeskus
http://hdl.handle.net/10138/338549
op_rights CC BY 4.0
openAccess
op_doi https://doi.org/10.5194/acp-20-5527-2020
container_title Atmospheric Chemistry and Physics
container_volume 20
container_issue 9
container_start_page 5527
op_container_end_page 5546
_version_ 1774713516358369280