Understanding the surface temperature response and its uncertainty to CO2, CH4, black carbon, and sulfate

Understanding the regional surface temperature responses to different anthropogenic climate forcing agents, such as greenhouse gases and aerosols, is crucial for understanding past and future regional climate changes. In modern climate models, the regional temperature responses vary greatly for all...

Full description

Bibliographic Details
Published in:Atmospheric Chemistry and Physics
Main Authors: Nordling, Kalle, Korhonen, Hannele, Räisänen, Jouni, Partanen, Antti-Ilari, Samset, Bjørn H., Merikanto, Joonas
Other Authors: Institute for Atmospheric and Earth System Research (INAR)
Format: Article in Journal/Newspaper
Language:English
Published: 2021
Subjects:
Online Access:http://hdl.handle.net/10138/336190
id ftunivhelsihelda:oai:helda.helsinki.fi:10138/336190
record_format openpolar
spelling ftunivhelsihelda:oai:helda.helsinki.fi:10138/336190 2023-05-15T13:11:57+02:00 Understanding the surface temperature response and its uncertainty to CO2, CH4, black carbon, and sulfate Nordling, Kalle Korhonen, Hannele Räisänen, Jouni Partanen, Antti-Ilari Samset, Bjørn H. Merikanto, Joonas Institute for Atmospheric and Earth System Research (INAR) 2021-10-08 18 http://hdl.handle.net/10138/336190 eng eng Atmospheric Chemistry and Physics https://doi.org/10.5194/acp-21-14941-2021 1680-7316 Nordling , K , Korhonen , H , Räisänen , J , Partanen , A-I , Samset , B H & Merikanto , J 2021 , ' Understanding the surface temperature response and its uncertainty to CO2, CH4, black carbon, and sulfate ' , Atmospheric Chemistry and Physics , vol. 21 , no. 19 , pp. 14941-14958 . https://doi.org/10.5194/acp-21-14941-2021 PURE: 170198890 PURE UUID: 262e8f72-1a9c-4ce6-9c4e-442ceb0c9da5 WOS: 000706237400001 Scopus: 85116930994 ORCID: /0000-0003-3657-1588/work/102967095 http://hdl.handle.net/10138/336190 cc_by info:eu-repo/semantics/openAccess openAccess CC-BY 114 Physical sciences 1171 Geosciences Article publishedVersion 2021 ftunivhelsihelda https://doi.org/10.5194/acp-21-14941-2021 2021-12-23T00:01:50Z Understanding the regional surface temperature responses to different anthropogenic climate forcing agents, such as greenhouse gases and aerosols, is crucial for understanding past and future regional climate changes. In modern climate models, the regional temperature responses vary greatly for all major forcing agents, but the causes of this variability are poorly understood. Here, we analyze how changes in atmospheric and oceanic energy fluxes due to perturbations in different anthropogenic climate forcing agents lead to changes in global and regional surface temperatures. We use climate model data on idealized perturbations in four major anthropogenic climate forcing agents (CO2, CH4, sulfate, and black carbon aerosols) from Precipitation Driver Response Model Intercomparison Project (PDRMIP) climate experiments for six climate models (CanESM2, HadGEM2-ES, NCAR-CESM1-CAM4, NorESM1, MIROC-SPRINTARS, GISS-E2). Particularly, we decompose the regional energy budget contributions to the surface temperature responses due to changes in longwave and shortwave fluxes under clear-sky and cloudy conditions, surface albedo changes, and oceanic and atmospheric energy transport. We also analyze the regional model-to-model temperature response spread due to each of these components. The global surface temperature response stems from changes in longwave emissivity for greenhouse gases (CO2 and CH4) and mainly from changes in shortwave clear-sky fluxes for aerosols (sulfate and black carbon). The global surface temperature response normalized by effective radiative forcing is nearly the same for all forcing agents (0.63, 0.54, 0.57, 0.61KW 1 m(2)). While the main physical processes driving global temperature responses vary between forcing agents, for all forcing agents the model-to-model spread in temperature responses is dominated by differences in modeled changes in longwave clear-sky emissivity. Furthermore, in polar regions for all forcing agents the differences in surface albedo change is a key contributor to temperature responses and its spread. For black carbon, the modeled differences in temperature response due to shortwave clear-sky radiation are also important in the Arctic. Regional model-to-model differences due to changes in shortwave and longwave cloud radiative effect strongly modulate each other. For aerosols, clouds play a major role in the model spread of regional surface temperature responses. In regions with strong aerosol forcing, the model-to-model differences arise from shortwave clear-sky responses and are strongly modulated by combined temperature responses to oceanic and atmospheric heat transport in the models. Peer reviewed Article in Journal/Newspaper albedo Arctic black carbon Helsingfors Universitet: HELDA – Helsingin yliopiston digitaalinen arkisto Arctic Atmospheric Chemistry and Physics 21 19 14941 14958
institution Open Polar
collection Helsingfors Universitet: HELDA – Helsingin yliopiston digitaalinen arkisto
op_collection_id ftunivhelsihelda
language English
topic 114 Physical sciences
1171 Geosciences
spellingShingle 114 Physical sciences
1171 Geosciences
Nordling, Kalle
Korhonen, Hannele
Räisänen, Jouni
Partanen, Antti-Ilari
Samset, Bjørn H.
Merikanto, Joonas
Understanding the surface temperature response and its uncertainty to CO2, CH4, black carbon, and sulfate
topic_facet 114 Physical sciences
1171 Geosciences
description Understanding the regional surface temperature responses to different anthropogenic climate forcing agents, such as greenhouse gases and aerosols, is crucial for understanding past and future regional climate changes. In modern climate models, the regional temperature responses vary greatly for all major forcing agents, but the causes of this variability are poorly understood. Here, we analyze how changes in atmospheric and oceanic energy fluxes due to perturbations in different anthropogenic climate forcing agents lead to changes in global and regional surface temperatures. We use climate model data on idealized perturbations in four major anthropogenic climate forcing agents (CO2, CH4, sulfate, and black carbon aerosols) from Precipitation Driver Response Model Intercomparison Project (PDRMIP) climate experiments for six climate models (CanESM2, HadGEM2-ES, NCAR-CESM1-CAM4, NorESM1, MIROC-SPRINTARS, GISS-E2). Particularly, we decompose the regional energy budget contributions to the surface temperature responses due to changes in longwave and shortwave fluxes under clear-sky and cloudy conditions, surface albedo changes, and oceanic and atmospheric energy transport. We also analyze the regional model-to-model temperature response spread due to each of these components. The global surface temperature response stems from changes in longwave emissivity for greenhouse gases (CO2 and CH4) and mainly from changes in shortwave clear-sky fluxes for aerosols (sulfate and black carbon). The global surface temperature response normalized by effective radiative forcing is nearly the same for all forcing agents (0.63, 0.54, 0.57, 0.61KW 1 m(2)). While the main physical processes driving global temperature responses vary between forcing agents, for all forcing agents the model-to-model spread in temperature responses is dominated by differences in modeled changes in longwave clear-sky emissivity. Furthermore, in polar regions for all forcing agents the differences in surface albedo change is a key contributor to temperature responses and its spread. For black carbon, the modeled differences in temperature response due to shortwave clear-sky radiation are also important in the Arctic. Regional model-to-model differences due to changes in shortwave and longwave cloud radiative effect strongly modulate each other. For aerosols, clouds play a major role in the model spread of regional surface temperature responses. In regions with strong aerosol forcing, the model-to-model differences arise from shortwave clear-sky responses and are strongly modulated by combined temperature responses to oceanic and atmospheric heat transport in the models. Peer reviewed
author2 Institute for Atmospheric and Earth System Research (INAR)
format Article in Journal/Newspaper
author Nordling, Kalle
Korhonen, Hannele
Räisänen, Jouni
Partanen, Antti-Ilari
Samset, Bjørn H.
Merikanto, Joonas
author_facet Nordling, Kalle
Korhonen, Hannele
Räisänen, Jouni
Partanen, Antti-Ilari
Samset, Bjørn H.
Merikanto, Joonas
author_sort Nordling, Kalle
title Understanding the surface temperature response and its uncertainty to CO2, CH4, black carbon, and sulfate
title_short Understanding the surface temperature response and its uncertainty to CO2, CH4, black carbon, and sulfate
title_full Understanding the surface temperature response and its uncertainty to CO2, CH4, black carbon, and sulfate
title_fullStr Understanding the surface temperature response and its uncertainty to CO2, CH4, black carbon, and sulfate
title_full_unstemmed Understanding the surface temperature response and its uncertainty to CO2, CH4, black carbon, and sulfate
title_sort understanding the surface temperature response and its uncertainty to co2, ch4, black carbon, and sulfate
publishDate 2021
url http://hdl.handle.net/10138/336190
geographic Arctic
geographic_facet Arctic
genre albedo
Arctic
black carbon
genre_facet albedo
Arctic
black carbon
op_relation Atmospheric Chemistry and Physics
https://doi.org/10.5194/acp-21-14941-2021
1680-7316
Nordling , K , Korhonen , H , Räisänen , J , Partanen , A-I , Samset , B H & Merikanto , J 2021 , ' Understanding the surface temperature response and its uncertainty to CO2, CH4, black carbon, and sulfate ' , Atmospheric Chemistry and Physics , vol. 21 , no. 19 , pp. 14941-14958 . https://doi.org/10.5194/acp-21-14941-2021
PURE: 170198890
PURE UUID: 262e8f72-1a9c-4ce6-9c4e-442ceb0c9da5
WOS: 000706237400001
Scopus: 85116930994
ORCID: /0000-0003-3657-1588/work/102967095
http://hdl.handle.net/10138/336190
op_rights cc_by
info:eu-repo/semantics/openAccess
openAccess
op_rightsnorm CC-BY
op_doi https://doi.org/10.5194/acp-21-14941-2021
container_title Atmospheric Chemistry and Physics
container_volume 21
container_issue 19
container_start_page 14941
op_container_end_page 14958
_version_ 1766249655384932352