Bayesian approach to ionospheric imaging with Gaussian Markov random field priors
Ionosfääri on noin 60–1000 kilometrin korkeudella sijaitseva ilmakehän kerros, jossa kaasuatomien ja -molekyylien elektroneja on päässyt irtoamaan auringon säteilyn ja auringosta peräisin olevien nopeiden hiukkasten vaikutuksesta. Näin syntyneillä ioneilla ja vapailla elektroneilla on sähkö- ja magn...
Main Author: | |
---|---|
Format: | Thesis |
Language: | English |
Published: |
2020
|
Subjects: | |
Online Access: | http://hdl.handle.net/10138/318318 |
id |
ftunivhelsihelda:oai:helda.helsinki.fi:10138/318318 |
---|---|
record_format |
openpolar |
spelling |
ftunivhelsihelda:oai:helda.helsinki.fi:10138/318318 2023-08-20T04:06:15+02:00 Bayesian approach to ionospheric imaging with Gaussian Markov random field priors Norberg, Johannes 2020-08-14T10:24:21Z application/pdf http://hdl.handle.net/10138/318318 eng eng Finnish Meteorological Institute Contributions 173 0782-6117 978-952-336-124-9 http://hdl.handle.net/10138/318318 Ionosphere Thesis 2020 ftunivhelsihelda 2023-07-28T06:14:17Z Ionosfääri on noin 60–1000 kilometrin korkeudella sijaitseva ilmakehän kerros, jossa kaasuatomien ja -molekyylien elektroneja on päässyt irtoamaan auringon säteilyn ja auringosta peräisin olevien nopeiden hiukkasten vaikutuksesta. Näin syntyneillä ioneilla ja vapailla elektroneilla on sähkö- ja magneettikenttien kanssa vuorovaikuttava sähkövaraus. Ionosfäärillä on siksi merkittävä rooli radioliikenteessä. Se voi mahdollistaa horisontin yli tapahtuvat pitkät radiolähetykset heijastamalla lähetetyn sähkömagneettisen signaalin takaisin maata kohti. Toisaalta ionosfääri vaikuttaa myös sen läpäiseviin korkeampitaajuuksisiin signaaleihin. Esimerkiksi satelliittipaikannuksessa ionosfäärin vaikutus on parhaassakin tapauksessa otettava huomioon, mutta huonoimmassa se voi estää paikannuksen täysin. Näkyvin ja tunnetuin ionosfääriin liittyvä ilmiö lienee revontulet. Yksi keskeisistä suureista ionosfäärin tutkimuksessa on vapaiden elektronien määrä kuutiometrin tilavuudessa. Käytännössä elektronitiheyden mittaaminen on mahdollista mm. tutkilla, kuten Norjan, Suomen ja Ruotsin alueilla sijaitsevalla EISCAT-tutkajärjestelmällä, sekä raketti- tai satelliittimittauksilla. Mittaukset voivat olla hyvinkin tarkkoja, mutta tietoa saadaan ainoastaan tutkakeilan suunnassa tai mittalaitteen läheisyydestä. Näillä menetelmillä ionosfäärin tutkiminen laajemmalla alueella on siten vaikeaa ja kallista. Olemassa olevat paikannussatelliitit ja vastaanotinverkot mahdollistavat ionosfäärin elektronitiheyden mittaamisen alueellisessa, ja jopa globaalissa mittakaavassa, ensisijaisen käyttötarkoituksensa sivutuotteena. Satelliittimittausten ajallinen ja paikallinen kattavuus on hyvä, ja kaiken aikaa kasvava, mutta esimerkiksi tarkkoihin tutkamittauksiin verrattuna yksittäisten mittausten tuottama informaatio on huomattavasti vähäisempää. Tässä väitöstyössä kehitettiin tietokoneohjelmisto ionosfäärin elektronitiheyden kolmiulotteiseen kuvantamiseen. Menetelmä perustuu matemaattisten käänteisongelmien teoriaan ja muistuttaa lääketieteessä ... Thesis EISCAT Revontulet Helsingfors Universitet: HELDA – Helsingin yliopiston digitaalinen arkisto |
institution |
Open Polar |
collection |
Helsingfors Universitet: HELDA – Helsingin yliopiston digitaalinen arkisto |
op_collection_id |
ftunivhelsihelda |
language |
English |
topic |
Ionosphere |
spellingShingle |
Ionosphere Norberg, Johannes Bayesian approach to ionospheric imaging with Gaussian Markov random field priors |
topic_facet |
Ionosphere |
description |
Ionosfääri on noin 60–1000 kilometrin korkeudella sijaitseva ilmakehän kerros, jossa kaasuatomien ja -molekyylien elektroneja on päässyt irtoamaan auringon säteilyn ja auringosta peräisin olevien nopeiden hiukkasten vaikutuksesta. Näin syntyneillä ioneilla ja vapailla elektroneilla on sähkö- ja magneettikenttien kanssa vuorovaikuttava sähkövaraus. Ionosfäärillä on siksi merkittävä rooli radioliikenteessä. Se voi mahdollistaa horisontin yli tapahtuvat pitkät radiolähetykset heijastamalla lähetetyn sähkömagneettisen signaalin takaisin maata kohti. Toisaalta ionosfääri vaikuttaa myös sen läpäiseviin korkeampitaajuuksisiin signaaleihin. Esimerkiksi satelliittipaikannuksessa ionosfäärin vaikutus on parhaassakin tapauksessa otettava huomioon, mutta huonoimmassa se voi estää paikannuksen täysin. Näkyvin ja tunnetuin ionosfääriin liittyvä ilmiö lienee revontulet. Yksi keskeisistä suureista ionosfäärin tutkimuksessa on vapaiden elektronien määrä kuutiometrin tilavuudessa. Käytännössä elektronitiheyden mittaaminen on mahdollista mm. tutkilla, kuten Norjan, Suomen ja Ruotsin alueilla sijaitsevalla EISCAT-tutkajärjestelmällä, sekä raketti- tai satelliittimittauksilla. Mittaukset voivat olla hyvinkin tarkkoja, mutta tietoa saadaan ainoastaan tutkakeilan suunnassa tai mittalaitteen läheisyydestä. Näillä menetelmillä ionosfäärin tutkiminen laajemmalla alueella on siten vaikeaa ja kallista. Olemassa olevat paikannussatelliitit ja vastaanotinverkot mahdollistavat ionosfäärin elektronitiheyden mittaamisen alueellisessa, ja jopa globaalissa mittakaavassa, ensisijaisen käyttötarkoituksensa sivutuotteena. Satelliittimittausten ajallinen ja paikallinen kattavuus on hyvä, ja kaiken aikaa kasvava, mutta esimerkiksi tarkkoihin tutkamittauksiin verrattuna yksittäisten mittausten tuottama informaatio on huomattavasti vähäisempää. Tässä väitöstyössä kehitettiin tietokoneohjelmisto ionosfäärin elektronitiheyden kolmiulotteiseen kuvantamiseen. Menetelmä perustuu matemaattisten käänteisongelmien teoriaan ja muistuttaa lääketieteessä ... |
format |
Thesis |
author |
Norberg, Johannes |
author_facet |
Norberg, Johannes |
author_sort |
Norberg, Johannes |
title |
Bayesian approach to ionospheric imaging with Gaussian Markov random field priors |
title_short |
Bayesian approach to ionospheric imaging with Gaussian Markov random field priors |
title_full |
Bayesian approach to ionospheric imaging with Gaussian Markov random field priors |
title_fullStr |
Bayesian approach to ionospheric imaging with Gaussian Markov random field priors |
title_full_unstemmed |
Bayesian approach to ionospheric imaging with Gaussian Markov random field priors |
title_sort |
bayesian approach to ionospheric imaging with gaussian markov random field priors |
publishDate |
2020 |
url |
http://hdl.handle.net/10138/318318 |
genre |
EISCAT Revontulet |
genre_facet |
EISCAT Revontulet |
op_relation |
Finnish Meteorological Institute Contributions 173 0782-6117 978-952-336-124-9 http://hdl.handle.net/10138/318318 |
_version_ |
1774717226642833408 |