Bayesian approach to ionospheric imaging with Gaussian Markov random field priors

Ionosfääri on noin 60–1000 kilometrin korkeudella sijaitseva ilmakehän kerros, jossa kaasuatomien ja -molekyylien elektroneja on päässyt irtoamaan auringon säteilyn ja auringosta peräisin olevien nopeiden hiukkasten vaikutuksesta. Näin syntyneillä ioneilla ja vapailla elektroneilla on sähkö- ja magn...

Full description

Bibliographic Details
Main Author: Norberg, Johannes
Format: Thesis
Language:English
Published: 2020
Subjects:
Online Access:http://hdl.handle.net/10138/318318
id ftunivhelsihelda:oai:helda.helsinki.fi:10138/318318
record_format openpolar
spelling ftunivhelsihelda:oai:helda.helsinki.fi:10138/318318 2023-08-20T04:06:15+02:00 Bayesian approach to ionospheric imaging with Gaussian Markov random field priors Norberg, Johannes 2020-08-14T10:24:21Z application/pdf http://hdl.handle.net/10138/318318 eng eng Finnish Meteorological Institute Contributions 173 0782-6117 978-952-336-124-9 http://hdl.handle.net/10138/318318 Ionosphere Thesis 2020 ftunivhelsihelda 2023-07-28T06:14:17Z Ionosfääri on noin 60–1000 kilometrin korkeudella sijaitseva ilmakehän kerros, jossa kaasuatomien ja -molekyylien elektroneja on päässyt irtoamaan auringon säteilyn ja auringosta peräisin olevien nopeiden hiukkasten vaikutuksesta. Näin syntyneillä ioneilla ja vapailla elektroneilla on sähkö- ja magneettikenttien kanssa vuorovaikuttava sähkövaraus. Ionosfäärillä on siksi merkittävä rooli radioliikenteessä. Se voi mahdollistaa horisontin yli tapahtuvat pitkät radiolähetykset heijastamalla lähetetyn sähkömagneettisen signaalin takaisin maata kohti. Toisaalta ionosfääri vaikuttaa myös sen läpäiseviin korkeampitaajuuksisiin signaaleihin. Esimerkiksi satelliittipaikannuksessa ionosfäärin vaikutus on parhaassakin tapauksessa otettava huomioon, mutta huonoimmassa se voi estää paikannuksen täysin. Näkyvin ja tunnetuin ionosfääriin liittyvä ilmiö lienee revontulet. Yksi keskeisistä suureista ionosfäärin tutkimuksessa on vapaiden elektronien määrä kuutiometrin tilavuudessa. Käytännössä elektronitiheyden mittaaminen on mahdollista mm. tutkilla, kuten Norjan, Suomen ja Ruotsin alueilla sijaitsevalla EISCAT-tutkajärjestelmällä, sekä raketti- tai satelliittimittauksilla. Mittaukset voivat olla hyvinkin tarkkoja, mutta tietoa saadaan ainoastaan tutkakeilan suunnassa tai mittalaitteen läheisyydestä. Näillä menetelmillä ionosfäärin tutkiminen laajemmalla alueella on siten vaikeaa ja kallista. Olemassa olevat paikannussatelliitit ja vastaanotinverkot mahdollistavat ionosfäärin elektronitiheyden mittaamisen alueellisessa, ja jopa globaalissa mittakaavassa, ensisijaisen käyttötarkoituksensa sivutuotteena. Satelliittimittausten ajallinen ja paikallinen kattavuus on hyvä, ja kaiken aikaa kasvava, mutta esimerkiksi tarkkoihin tutkamittauksiin verrattuna yksittäisten mittausten tuottama informaatio on huomattavasti vähäisempää. Tässä väitöstyössä kehitettiin tietokoneohjelmisto ionosfäärin elektronitiheyden kolmiulotteiseen kuvantamiseen. Menetelmä perustuu matemaattisten käänteisongelmien teoriaan ja muistuttaa lääketieteessä ... Thesis EISCAT Revontulet Helsingfors Universitet: HELDA – Helsingin yliopiston digitaalinen arkisto
institution Open Polar
collection Helsingfors Universitet: HELDA – Helsingin yliopiston digitaalinen arkisto
op_collection_id ftunivhelsihelda
language English
topic Ionosphere
spellingShingle Ionosphere
Norberg, Johannes
Bayesian approach to ionospheric imaging with Gaussian Markov random field priors
topic_facet Ionosphere
description Ionosfääri on noin 60–1000 kilometrin korkeudella sijaitseva ilmakehän kerros, jossa kaasuatomien ja -molekyylien elektroneja on päässyt irtoamaan auringon säteilyn ja auringosta peräisin olevien nopeiden hiukkasten vaikutuksesta. Näin syntyneillä ioneilla ja vapailla elektroneilla on sähkö- ja magneettikenttien kanssa vuorovaikuttava sähkövaraus. Ionosfäärillä on siksi merkittävä rooli radioliikenteessä. Se voi mahdollistaa horisontin yli tapahtuvat pitkät radiolähetykset heijastamalla lähetetyn sähkömagneettisen signaalin takaisin maata kohti. Toisaalta ionosfääri vaikuttaa myös sen läpäiseviin korkeampitaajuuksisiin signaaleihin. Esimerkiksi satelliittipaikannuksessa ionosfäärin vaikutus on parhaassakin tapauksessa otettava huomioon, mutta huonoimmassa se voi estää paikannuksen täysin. Näkyvin ja tunnetuin ionosfääriin liittyvä ilmiö lienee revontulet. Yksi keskeisistä suureista ionosfäärin tutkimuksessa on vapaiden elektronien määrä kuutiometrin tilavuudessa. Käytännössä elektronitiheyden mittaaminen on mahdollista mm. tutkilla, kuten Norjan, Suomen ja Ruotsin alueilla sijaitsevalla EISCAT-tutkajärjestelmällä, sekä raketti- tai satelliittimittauksilla. Mittaukset voivat olla hyvinkin tarkkoja, mutta tietoa saadaan ainoastaan tutkakeilan suunnassa tai mittalaitteen läheisyydestä. Näillä menetelmillä ionosfäärin tutkiminen laajemmalla alueella on siten vaikeaa ja kallista. Olemassa olevat paikannussatelliitit ja vastaanotinverkot mahdollistavat ionosfäärin elektronitiheyden mittaamisen alueellisessa, ja jopa globaalissa mittakaavassa, ensisijaisen käyttötarkoituksensa sivutuotteena. Satelliittimittausten ajallinen ja paikallinen kattavuus on hyvä, ja kaiken aikaa kasvava, mutta esimerkiksi tarkkoihin tutkamittauksiin verrattuna yksittäisten mittausten tuottama informaatio on huomattavasti vähäisempää. Tässä väitöstyössä kehitettiin tietokoneohjelmisto ionosfäärin elektronitiheyden kolmiulotteiseen kuvantamiseen. Menetelmä perustuu matemaattisten käänteisongelmien teoriaan ja muistuttaa lääketieteessä ...
format Thesis
author Norberg, Johannes
author_facet Norberg, Johannes
author_sort Norberg, Johannes
title Bayesian approach to ionospheric imaging with Gaussian Markov random field priors
title_short Bayesian approach to ionospheric imaging with Gaussian Markov random field priors
title_full Bayesian approach to ionospheric imaging with Gaussian Markov random field priors
title_fullStr Bayesian approach to ionospheric imaging with Gaussian Markov random field priors
title_full_unstemmed Bayesian approach to ionospheric imaging with Gaussian Markov random field priors
title_sort bayesian approach to ionospheric imaging with gaussian markov random field priors
publishDate 2020
url http://hdl.handle.net/10138/318318
genre EISCAT
Revontulet
genre_facet EISCAT
Revontulet
op_relation Finnish Meteorological Institute Contributions
173
0782-6117
978-952-336-124-9
http://hdl.handle.net/10138/318318
_version_ 1774717226642833408