Spatio-temporal perspectives on aquatic carbon dynamics and limnoecological change in climate-sensitive lakes

Northern lakes are displaying widespread ecological reorganizations in response to global change. These sensitive freshwater ecosystems are an integral component of subarctic and arctic landscapes and play a critical role in regional and global biogeochemical cycles. To understand lake ecosystem res...

Full description

Bibliographic Details
Main Author: Rantala, Marttiina
Other Authors: Smol, John, University of Helsinki, Faculty of Science, Department of Geosciences and Geography, Division of Biogeoscience, Helsingin yliopisto, matemaattis-luonnontieteellinen tiedekunta, geotieteiden ja maantieteen laitos, Helsingfors universitet, matematisk-naturvetenskapliga fakulteten, institutionen för geovetenskaper och geografi, Nevalainen, Liisa, Luoto, Tomi, Rautio, Milla
Format: Doctoral or Postdoctoral Thesis
Language:English
Published: Helsingin yliopisto 2017
Subjects:
Online Access:http://hdl.handle.net/10138/185247
Description
Summary:Northern lakes are displaying widespread ecological reorganizations in response to global change. These sensitive freshwater ecosystems are an integral component of subarctic and arctic landscapes and play a critical role in regional and global biogeochemical cycles. To understand lake ecosystem responses to direct and indirect climate forcing, and to estimate future trajectories of environmental change, we must look for past analogies of climate-lake interaction recorded in lake sedimentary archives. The present, in turn, holds the key to understand the past. This work examines patters and drivers of limnoecological change in shallow subarctic lakes across the treeline ecotone in northern Finland. A diverse set of neolimnological and paleolimnological tools and approaches were employed to explore aquatic ecosystem responses to landscape variability and direct climate forcing through space and time. Particular emphasis was placed on aquatic organic carbon that regulates vital biogeochemical processes in lakes and couples them to the global carbon cycle. To address landscape-mediated climate impact on shallow subarctic lakes, catchment controls on pelagic (lake water) and benthic (sediment) carbon pools, nutrients and productivity, periphytic algal (diatom) communities, and carbon utilization of benthic macrofauna (Cladocera) were assessed in 31 lakes spanning the treeline. To investigate long-term ecosystem development and carbon dynamics under natural and anthropogenic climate variability, two downcore sediment sequences from shallow and oligotrophic treeline lakes, covering the postglacial period (~11 500 years) and the late neoglacial (~600 years), were examined for diverse biogeochemical and paleobiological indices. Across the treeline, lake water carbon pools were fundamentally shaped by wetland influence. The adverse effect of terrestrial colored organic carbon on underwater light availability was diminished in the shallow waters and superseded by nutrient stimulation of primary production. Catchment and ...