Spectra of linear fractional composition operators and properties of universal operators

The topics of this thesis in mathematics belong to the area of operator theory which, in general, studies linear transformations between complete normed vector spaces. Here, all operators considered are bounded and act on complex separable infinite-dimensional Hilbert space. A prototypical example o...

Full description

Bibliographic Details
Main Author: Schroderus, Riikka
Other Authors: Lindström, Mikael, University of Helsinki, Faculty of Science, Department of Mathematics and Statistics, Helsingin yliopisto, matemaattis-luonnontieteellinen tiedekunta, matematiikan ja tilastotieteen laitos, Helsingfors universitet, matematisk-naturvetenskapliga fakulteten, institutionen för matematik och statistik, Tylli, Hans-Olav, Nieminen, Pekka
Format: Doctoral or Postdoctoral Thesis
Language:English
Published: Helsingin yliopisto 2017
Subjects:
Online Access:http://hdl.handle.net/10138/180931
id ftunivhelsihelda:oai:helda.helsinki.fi:10138/180931
record_format openpolar
spelling ftunivhelsihelda:oai:helda.helsinki.fi:10138/180931 2023-08-20T04:10:15+02:00 Spectra of linear fractional composition operators and properties of universal operators Schroderus, Riikka Lindström, Mikael University of Helsinki, Faculty of Science, Department of Mathematics and Statistics Helsingin yliopisto, matemaattis-luonnontieteellinen tiedekunta, matematiikan ja tilastotieteen laitos Helsingfors universitet, matematisk-naturvetenskapliga fakulteten, institutionen för matematik och statistik Tylli, Hans-Olav Nieminen, Pekka 2017-04-24T08:39:37Z application/pdf http://hdl.handle.net/10138/180931 eng eng Helsingin yliopisto Helsingfors universitet University of Helsinki URN:ISBN:978-951-51-3096-9 Unigrafia: Helsingin yliopisto, 2017 http://hdl.handle.net/10138/180931 URN:ISBN:978-951-51-3097-6 Julkaisu on tekijänoikeussäännösten alainen. Teosta voi lukea ja tulostaa henkilökohtaista käyttöä varten. Käyttö kaupallisiin tarkoituksiin on kielletty. This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited. Publikationen är skyddad av upphovsrätten. Den får läsas och skrivas ut för personligt bruk. Användning i kommersiellt syfte är förbjuden. matematiikka Text Doctoral dissertation (article-based) Artikkeliväitöskirja Artikelavhandling doctoralThesis 2017 ftunivhelsihelda 2023-07-28T06:08:39Z The topics of this thesis in mathematics belong to the area of operator theory which, in general, studies linear transformations between complete normed vector spaces. Here, all operators considered are bounded and act on complex separable infinite-dimensional Hilbert space. A prototypical example of Hilbert spaces is formed by the square summable sequences of complex numbers. Other common Hilbert spaces consist of functions which are analytic on some open domain of the complex plane. The characteristic property of analytic functions is that they are locally given by a convergent power series and so the behaviour of such functions is rather rigid. Thesis consists of the introductory part and three research articles, the first and the third being co-authored with, respectively, E. A. Gallardo-Gutiérrez and H.-O. Tylli. Our focus in the first two articles is in the spectral properties of composition operators which are induced by linear fractional transformations (also known as Möbius maps). As the name suggests, a composition operator composes a function with a fixed mapping called the inducing map. In studying these operators we can take advantage of function theoretic tools, and it is not surprising that the properties of composition operator depend intricately on the inducing map. The spectrum of an operator acting on an infinite-dimensional space generalizes the concept of eigenvalues of a finite matrix. In general, determining the spectrum of a given operator is not an easy task. In the first article we compute the spectra of composition operators induced by certain linear fractional self-maps of the unit disc. Here the operators act on the whole range of weighted Dirichlet spaces which are Hilbert spaces of analytic functions on the unit disc. Earlier results in this context cover e.g. the classical Hardy space, the weighted Bergman spaces and the classical Dirichlet space. Our results complete the spectral picture of linear fractional composition operators on the weighted Dirichlet spaces. In particular, ... Doctoral or Postdoctoral Thesis tylli Helsingfors Universitet: HELDA – Helsingin yliopiston digitaalinen arkisto Gutiérrez ENVELOPE(-57.917,-57.917,-63.300,-63.300) Möbius ENVELOPE(164.217,164.217,-74.633,-74.633)
institution Open Polar
collection Helsingfors Universitet: HELDA – Helsingin yliopiston digitaalinen arkisto
op_collection_id ftunivhelsihelda
language English
topic matematiikka
spellingShingle matematiikka
Schroderus, Riikka
Spectra of linear fractional composition operators and properties of universal operators
topic_facet matematiikka
description The topics of this thesis in mathematics belong to the area of operator theory which, in general, studies linear transformations between complete normed vector spaces. Here, all operators considered are bounded and act on complex separable infinite-dimensional Hilbert space. A prototypical example of Hilbert spaces is formed by the square summable sequences of complex numbers. Other common Hilbert spaces consist of functions which are analytic on some open domain of the complex plane. The characteristic property of analytic functions is that they are locally given by a convergent power series and so the behaviour of such functions is rather rigid. Thesis consists of the introductory part and three research articles, the first and the third being co-authored with, respectively, E. A. Gallardo-Gutiérrez and H.-O. Tylli. Our focus in the first two articles is in the spectral properties of composition operators which are induced by linear fractional transformations (also known as Möbius maps). As the name suggests, a composition operator composes a function with a fixed mapping called the inducing map. In studying these operators we can take advantage of function theoretic tools, and it is not surprising that the properties of composition operator depend intricately on the inducing map. The spectrum of an operator acting on an infinite-dimensional space generalizes the concept of eigenvalues of a finite matrix. In general, determining the spectrum of a given operator is not an easy task. In the first article we compute the spectra of composition operators induced by certain linear fractional self-maps of the unit disc. Here the operators act on the whole range of weighted Dirichlet spaces which are Hilbert spaces of analytic functions on the unit disc. Earlier results in this context cover e.g. the classical Hardy space, the weighted Bergman spaces and the classical Dirichlet space. Our results complete the spectral picture of linear fractional composition operators on the weighted Dirichlet spaces. In particular, ...
author2 Lindström, Mikael
University of Helsinki, Faculty of Science, Department of Mathematics and Statistics
Helsingin yliopisto, matemaattis-luonnontieteellinen tiedekunta, matematiikan ja tilastotieteen laitos
Helsingfors universitet, matematisk-naturvetenskapliga fakulteten, institutionen för matematik och statistik
Tylli, Hans-Olav
Nieminen, Pekka
format Doctoral or Postdoctoral Thesis
author Schroderus, Riikka
author_facet Schroderus, Riikka
author_sort Schroderus, Riikka
title Spectra of linear fractional composition operators and properties of universal operators
title_short Spectra of linear fractional composition operators and properties of universal operators
title_full Spectra of linear fractional composition operators and properties of universal operators
title_fullStr Spectra of linear fractional composition operators and properties of universal operators
title_full_unstemmed Spectra of linear fractional composition operators and properties of universal operators
title_sort spectra of linear fractional composition operators and properties of universal operators
publisher Helsingin yliopisto
publishDate 2017
url http://hdl.handle.net/10138/180931
long_lat ENVELOPE(-57.917,-57.917,-63.300,-63.300)
ENVELOPE(164.217,164.217,-74.633,-74.633)
geographic Gutiérrez
Möbius
geographic_facet Gutiérrez
Möbius
genre tylli
genre_facet tylli
op_relation URN:ISBN:978-951-51-3096-9
Unigrafia: Helsingin yliopisto, 2017
http://hdl.handle.net/10138/180931
URN:ISBN:978-951-51-3097-6
op_rights Julkaisu on tekijänoikeussäännösten alainen. Teosta voi lukea ja tulostaa henkilökohtaista käyttöä varten. Käyttö kaupallisiin tarkoituksiin on kielletty.
This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited.
Publikationen är skyddad av upphovsrätten. Den får läsas och skrivas ut för personligt bruk. Användning i kommersiellt syfte är förbjuden.
_version_ 1774724311982014464