A synthesis of cloud condensation nuclei counter (CCNC) measurements within the EUCAARI network

Cloud condensation nuclei counter (CCNC) measurements performed at 14 locations around the world within the European Integrated project on Aerosol Cloud Climate and Air Quality interactions (EUCAARI) framework have been analysed and discussed with respect to the cloud condensation nuclei (CCN) activ...

Full description

Bibliographic Details
Published in:Atmospheric Chemistry and Physics
Main Authors: Paramonov, Mikhail, Kerminen, Veli-Matti, Gysel, M., Aalto, Pasi, Andreae, M. O., Asmi, E., Baltensperger, U., Bougiatioti, A., Brus, D., Frank, G. P., Good, N., Gunthe, S. S., Hao, L., Irwin, M., Jaatinen, A., Juranyi, Z., King, S. M., Kortelainen, A., Kristensson, A., Lihavainen, H., Kulmala, Markku, Lohmann, U., Martin, S. T., McFiggans, G., Mihalopoulos, N., Nenes, A., O'Dowd, C. D., Ovadnevaite, J., Petäjä, Tuukka, Poschl, U., Roberts, G. C., Rose, D., Svenningsson, B., Swietlicki, E., Weingartner, E., Whitehead, J., Wiedensohler, A., Wittbom, C., Sierau, B.
Other Authors: Aerosol-Cloud-Climate -Interactions (ACCI), Department of Physics
Format: Article in Journal/Newspaper
Language:English
Published: COPERNICUS GESELLSCHAFT MBH 2016
Subjects:
Online Access:http://hdl.handle.net/10138/161552
id ftunivhelsihelda:oai:helda.helsinki.fi:10138/161552
record_format openpolar
institution Open Polar
collection HELDA – University of Helsinki Open Repository
op_collection_id ftunivhelsihelda
language English
topic AEROSOL CHEMICAL-COMPOSITION
SIZE-RESOLVED MEASUREMENTS
ALPINE SITE JUNGFRAUJOCH
MARINE BOUNDARY-LAYER
BIOMASS BURNING SMOKE
MEGA-CITY GUANGZHOU
3580 M A.S.L
HYGROSCOPIC GROWTH
DROPLET GROWTH
PARTICLE-SIZE
114 Physical sciences
spellingShingle AEROSOL CHEMICAL-COMPOSITION
SIZE-RESOLVED MEASUREMENTS
ALPINE SITE JUNGFRAUJOCH
MARINE BOUNDARY-LAYER
BIOMASS BURNING SMOKE
MEGA-CITY GUANGZHOU
3580 M A.S.L
HYGROSCOPIC GROWTH
DROPLET GROWTH
PARTICLE-SIZE
114 Physical sciences
Paramonov, Mikhail
Kerminen, Veli-Matti
Gysel, M.
Aalto, Pasi
Andreae, M. O.
Asmi, E.
Baltensperger, U.
Bougiatioti, A.
Brus, D.
Frank, G. P.
Good, N.
Gunthe, S. S.
Hao, L.
Irwin, M.
Jaatinen, A.
Juranyi, Z.
King, S. M.
Kortelainen, A.
Kristensson, A.
Lihavainen, H.
Kulmala, Markku
Lohmann, U.
Martin, S. T.
McFiggans, G.
Mihalopoulos, N.
Nenes, A.
O'Dowd, C. D.
Ovadnevaite, J.
Petäjä, Tuukka
Poschl, U.
Roberts, G. C.
Rose, D.
Svenningsson, B.
Swietlicki, E.
Weingartner, E.
Whitehead, J.
Wiedensohler, A.
Wittbom, C.
Sierau, B.
A synthesis of cloud condensation nuclei counter (CCNC) measurements within the EUCAARI network
topic_facet AEROSOL CHEMICAL-COMPOSITION
SIZE-RESOLVED MEASUREMENTS
ALPINE SITE JUNGFRAUJOCH
MARINE BOUNDARY-LAYER
BIOMASS BURNING SMOKE
MEGA-CITY GUANGZHOU
3580 M A.S.L
HYGROSCOPIC GROWTH
DROPLET GROWTH
PARTICLE-SIZE
114 Physical sciences
description Cloud condensation nuclei counter (CCNC) measurements performed at 14 locations around the world within the European Integrated project on Aerosol Cloud Climate and Air Quality interactions (EUCAARI) framework have been analysed and discussed with respect to the cloud condensation nuclei (CCN) activation and hygroscopic properties of the atmospheric aerosol. The annual mean ratio of activated cloud condensation nuclei (N-CCN) to the total number concentration of particles (N-CN), known as the activated fraction A, shows a similar functional dependence on supersaturation S at many locations - exceptions to this being certain marine locations, a free troposphere site and background sites in south-west Germany and northern Finland. The use of total number concentration of particles above 50 and 100 nm diameter when calculating the activated fractions (A(50) and A(100), respectively) renders a much more stable dependence of A on S; A(50) and A(100) also reveal the effect of the size distribution on CCN activation. With respect to chemical composition, it was found that the hygroscopicity of aerosol particles as a function of size differs among locations. The hygroscopicity parameter kappa decreased with an increasing size at a continental site in south-west Germany and fluctuated without any particular size dependence across the observed size range in the remote tropical North Atlantic and rural central Hungary. At all other locations kappa increased with size. In fact, in Hyytiala, Vavihill, Jungfraujoch and Pallas the difference in hygroscopicity between Aitken and accumulation mode aerosol was statistically significant at the 5% significance level. In a boreal environment the assumption of a size-independent kappa can lead to a potentially substantial overestimation of N-CCN at S levels above 0.6 %. The same is true for other locations where kappa was found to increase with size. While detailed information about aerosol hygroscopicity can significantly improve the prediction of N-CCN, total aerosol number ...
author2 Aerosol-Cloud-Climate -Interactions (ACCI)
Department of Physics
format Article in Journal/Newspaper
author Paramonov, Mikhail
Kerminen, Veli-Matti
Gysel, M.
Aalto, Pasi
Andreae, M. O.
Asmi, E.
Baltensperger, U.
Bougiatioti, A.
Brus, D.
Frank, G. P.
Good, N.
Gunthe, S. S.
Hao, L.
Irwin, M.
Jaatinen, A.
Juranyi, Z.
King, S. M.
Kortelainen, A.
Kristensson, A.
Lihavainen, H.
Kulmala, Markku
Lohmann, U.
Martin, S. T.
McFiggans, G.
Mihalopoulos, N.
Nenes, A.
O'Dowd, C. D.
Ovadnevaite, J.
Petäjä, Tuukka
Poschl, U.
Roberts, G. C.
Rose, D.
Svenningsson, B.
Swietlicki, E.
Weingartner, E.
Whitehead, J.
Wiedensohler, A.
Wittbom, C.
Sierau, B.
author_facet Paramonov, Mikhail
Kerminen, Veli-Matti
Gysel, M.
Aalto, Pasi
Andreae, M. O.
Asmi, E.
Baltensperger, U.
Bougiatioti, A.
Brus, D.
Frank, G. P.
Good, N.
Gunthe, S. S.
Hao, L.
Irwin, M.
Jaatinen, A.
Juranyi, Z.
King, S. M.
Kortelainen, A.
Kristensson, A.
Lihavainen, H.
Kulmala, Markku
Lohmann, U.
Martin, S. T.
McFiggans, G.
Mihalopoulos, N.
Nenes, A.
O'Dowd, C. D.
Ovadnevaite, J.
Petäjä, Tuukka
Poschl, U.
Roberts, G. C.
Rose, D.
Svenningsson, B.
Swietlicki, E.
Weingartner, E.
Whitehead, J.
Wiedensohler, A.
Wittbom, C.
Sierau, B.
author_sort Paramonov, Mikhail
title A synthesis of cloud condensation nuclei counter (CCNC) measurements within the EUCAARI network
title_short A synthesis of cloud condensation nuclei counter (CCNC) measurements within the EUCAARI network
title_full A synthesis of cloud condensation nuclei counter (CCNC) measurements within the EUCAARI network
title_fullStr A synthesis of cloud condensation nuclei counter (CCNC) measurements within the EUCAARI network
title_full_unstemmed A synthesis of cloud condensation nuclei counter (CCNC) measurements within the EUCAARI network
title_sort synthesis of cloud condensation nuclei counter (ccnc) measurements within the eucaari network
publisher COPERNICUS GESELLSCHAFT MBH
publishDate 2016
url http://hdl.handle.net/10138/161552
long_lat ENVELOPE(-44.516,-44.516,-60.733,-60.733)
geographic Aitken
geographic_facet Aitken
genre Arctic
North Atlantic
Northern Finland
genre_facet Arctic
North Atlantic
Northern Finland
op_relation 10.5194/acp-15-12211-2015
The research leading to the results published herein has received funding from the ACTRIS Project of the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 262254. Additional funding was provided by the Max Planck Society. HEA-PRTLI4 Environment and Climate: Impact and Responses programme, EC 6th Framework programme project EUCAARI (036833-2), EC 7th Framework programme project BACCHUS (603445) are all acknowledged. The authors would like to thank Jakub Bialek for collecting CCN data and Ciaran Monahan for SMPS measurements at Mace Head station. The authors would also like to thank Tuomo Nieminen, Nonne L. Prisle and Ari Asmi for the help with statistics and data analysis. Simon Schallhart, Ksenia Atlaskina and Anna Nikandrova are all gratefully acknowledged for the discussions, help and support with the data analysis and plotting. The Centre of Excellence in Atmospheric Science - from molecular and biological processes to the global climate FCoE, cryosphere-atmosphere interactions in a changing Arctic climate CRAICC initiative, KONE foundation and the Swedish Research Council (VR) are acknowledged as well. The measurements at the Jungfraujoch were supported by MeteoSwiss in the framework of the Global Atmosphere Watch programme and the infrastructure was supported by the International Foundation High Altitude Research Station Jungfraujoch and Gornergrat. M. Gysel was supported by the ERC under grant 615922-BLACARAT.
Paramonov , M , Kerminen , V-M , Gysel , M , Aalto , P , Andreae , M O , Asmi , E , Baltensperger , U , Bougiatioti , A , Brus , D , Frank , G P , Good , N , Gunthe , S S , Hao , L , Irwin , M , Jaatinen , A , Juranyi , Z , King , S M , Kortelainen , A , Kristensson , A , Lihavainen , H , Kulmala , M , Lohmann , U , Martin , S T , McFiggans , G , Mihalopoulos , N , Nenes , A , O'Dowd , C D , Ovadnevaite , J , Petäjä , T , Poschl , U , Roberts , G C , Rose , D , Svenningsson , B , Swietlicki , E , Weingartner , E , Whitehead , J , Wiedensohler , A , Wittbom , C & Sierau , B 2015 , ' A synthesis of cloud condensation nuclei counter (CCNC) measurements within the EUCAARI network ' , Atmospheric Chemistry and Physics , vol. 15 , no. 21 , pp. 12211-12229 . https://doi.org/10.5194/acp-15-12211-2015
ORCID: /0000-0001-8826-9108/work/31521961
ORCID: /0000-0002-1881-9044/work/102822889
84946238238
9471f808-3729-42bc-a2a6-66038fadc7e9
http://hdl.handle.net/10138/161552
000365329000006
op_rights cc_by
openAccess
info:eu-repo/semantics/openAccess
container_title Atmospheric Chemistry and Physics
container_volume 15
container_issue 21
container_start_page 12211
op_container_end_page 12229
_version_ 1787421589672820736
spelling ftunivhelsihelda:oai:helda.helsinki.fi:10138/161552 2024-01-07T09:40:48+01:00 A synthesis of cloud condensation nuclei counter (CCNC) measurements within the EUCAARI network Paramonov, Mikhail Kerminen, Veli-Matti Gysel, M. Aalto, Pasi Andreae, M. O. Asmi, E. Baltensperger, U. Bougiatioti, A. Brus, D. Frank, G. P. Good, N. Gunthe, S. S. Hao, L. Irwin, M. Jaatinen, A. Juranyi, Z. King, S. M. Kortelainen, A. Kristensson, A. Lihavainen, H. Kulmala, Markku Lohmann, U. Martin, S. T. McFiggans, G. Mihalopoulos, N. Nenes, A. O'Dowd, C. D. Ovadnevaite, J. Petäjä, Tuukka Poschl, U. Roberts, G. C. Rose, D. Svenningsson, B. Swietlicki, E. Weingartner, E. Whitehead, J. Wiedensohler, A. Wittbom, C. Sierau, B. Aerosol-Cloud-Climate -Interactions (ACCI) Department of Physics 2016-05-10T12:00:01Z 19 application/pdf http://hdl.handle.net/10138/161552 eng eng COPERNICUS GESELLSCHAFT MBH 10.5194/acp-15-12211-2015 The research leading to the results published herein has received funding from the ACTRIS Project of the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 262254. Additional funding was provided by the Max Planck Society. HEA-PRTLI4 Environment and Climate: Impact and Responses programme, EC 6th Framework programme project EUCAARI (036833-2), EC 7th Framework programme project BACCHUS (603445) are all acknowledged. The authors would like to thank Jakub Bialek for collecting CCN data and Ciaran Monahan for SMPS measurements at Mace Head station. The authors would also like to thank Tuomo Nieminen, Nonne L. Prisle and Ari Asmi for the help with statistics and data analysis. Simon Schallhart, Ksenia Atlaskina and Anna Nikandrova are all gratefully acknowledged for the discussions, help and support with the data analysis and plotting. The Centre of Excellence in Atmospheric Science - from molecular and biological processes to the global climate FCoE, cryosphere-atmosphere interactions in a changing Arctic climate CRAICC initiative, KONE foundation and the Swedish Research Council (VR) are acknowledged as well. The measurements at the Jungfraujoch were supported by MeteoSwiss in the framework of the Global Atmosphere Watch programme and the infrastructure was supported by the International Foundation High Altitude Research Station Jungfraujoch and Gornergrat. M. Gysel was supported by the ERC under grant 615922-BLACARAT. Paramonov , M , Kerminen , V-M , Gysel , M , Aalto , P , Andreae , M O , Asmi , E , Baltensperger , U , Bougiatioti , A , Brus , D , Frank , G P , Good , N , Gunthe , S S , Hao , L , Irwin , M , Jaatinen , A , Juranyi , Z , King , S M , Kortelainen , A , Kristensson , A , Lihavainen , H , Kulmala , M , Lohmann , U , Martin , S T , McFiggans , G , Mihalopoulos , N , Nenes , A , O'Dowd , C D , Ovadnevaite , J , Petäjä , T , Poschl , U , Roberts , G C , Rose , D , Svenningsson , B , Swietlicki , E , Weingartner , E , Whitehead , J , Wiedensohler , A , Wittbom , C & Sierau , B 2015 , ' A synthesis of cloud condensation nuclei counter (CCNC) measurements within the EUCAARI network ' , Atmospheric Chemistry and Physics , vol. 15 , no. 21 , pp. 12211-12229 . https://doi.org/10.5194/acp-15-12211-2015 ORCID: /0000-0001-8826-9108/work/31521961 ORCID: /0000-0002-1881-9044/work/102822889 84946238238 9471f808-3729-42bc-a2a6-66038fadc7e9 http://hdl.handle.net/10138/161552 000365329000006 cc_by openAccess info:eu-repo/semantics/openAccess AEROSOL CHEMICAL-COMPOSITION SIZE-RESOLVED MEASUREMENTS ALPINE SITE JUNGFRAUJOCH MARINE BOUNDARY-LAYER BIOMASS BURNING SMOKE MEGA-CITY GUANGZHOU 3580 M A.S.L HYGROSCOPIC GROWTH DROPLET GROWTH PARTICLE-SIZE 114 Physical sciences Article publishedVersion 2016 ftunivhelsihelda 2023-12-14T00:01:15Z Cloud condensation nuclei counter (CCNC) measurements performed at 14 locations around the world within the European Integrated project on Aerosol Cloud Climate and Air Quality interactions (EUCAARI) framework have been analysed and discussed with respect to the cloud condensation nuclei (CCN) activation and hygroscopic properties of the atmospheric aerosol. The annual mean ratio of activated cloud condensation nuclei (N-CCN) to the total number concentration of particles (N-CN), known as the activated fraction A, shows a similar functional dependence on supersaturation S at many locations - exceptions to this being certain marine locations, a free troposphere site and background sites in south-west Germany and northern Finland. The use of total number concentration of particles above 50 and 100 nm diameter when calculating the activated fractions (A(50) and A(100), respectively) renders a much more stable dependence of A on S; A(50) and A(100) also reveal the effect of the size distribution on CCN activation. With respect to chemical composition, it was found that the hygroscopicity of aerosol particles as a function of size differs among locations. The hygroscopicity parameter kappa decreased with an increasing size at a continental site in south-west Germany and fluctuated without any particular size dependence across the observed size range in the remote tropical North Atlantic and rural central Hungary. At all other locations kappa increased with size. In fact, in Hyytiala, Vavihill, Jungfraujoch and Pallas the difference in hygroscopicity between Aitken and accumulation mode aerosol was statistically significant at the 5% significance level. In a boreal environment the assumption of a size-independent kappa can lead to a potentially substantial overestimation of N-CCN at S levels above 0.6 %. The same is true for other locations where kappa was found to increase with size. While detailed information about aerosol hygroscopicity can significantly improve the prediction of N-CCN, total aerosol number ... Article in Journal/Newspaper Arctic North Atlantic Northern Finland HELDA – University of Helsinki Open Repository Aitken ENVELOPE(-44.516,-44.516,-60.733,-60.733) Atmospheric Chemistry and Physics 15 21 12211 12229