Methodology of the first combined in-flight and ex situ stability assessment of organic-based solar cells for space applications

One of the key aims of the OSCAR project (Optical Sensors based on CARbon-materials)—in the framework of the REXUS/BEXUS program—was to explore the use of organic-based solar cells for (aero)space applications through the in-flight investigation of devices’ performance during a stratospheric balloon...

Full description

Bibliographic Details
Published in:Journal of Materials Research
Main Authors: Schreurs, Dieter, Nagels, Steven, Cardinaletti, Ilaria, Vangerven, Tim, Cornelissen, Rob, Vodnik, Jelle, Hruby, Jaroslav, Deferme, Wim, Manca, Jean V.
Format: Article in Journal/Newspaper
Language:English
Published: 2018
Subjects:
OPV
Online Access:http://hdl.handle.net/1942/26129
https://doi.org/10.1557/jmr.2018.156
id ftunivhasselt:oai:documentserver.uhasselt.be:1942/26129
record_format openpolar
institution Open Polar
collection Document Server@UHasselt (Hasselt University)
op_collection_id ftunivhasselt
language English
topic OSCAR
OPV
in-situ
organic solar cell
organic photovoltaic
solar cell
aerospace
space
spellingShingle OSCAR
OPV
in-situ
organic solar cell
organic photovoltaic
solar cell
aerospace
space
Schreurs, Dieter
Nagels, Steven
Cardinaletti, Ilaria
Vangerven, Tim
Cornelissen, Rob
Vodnik, Jelle
Hruby, Jaroslav
Deferme, Wim
Manca, Jean V.
Methodology of the first combined in-flight and ex situ stability assessment of organic-based solar cells for space applications
topic_facet OSCAR
OPV
in-situ
organic solar cell
organic photovoltaic
solar cell
aerospace
space
description One of the key aims of the OSCAR project (Optical Sensors based on CARbon-materials)—in the framework of the REXUS/BEXUS program—was to explore the use of organic-based solar cells for (aero)space applications through the in-flight investigation of devices’ performance during a stratospheric balloon flight. Next to the in-flight experiments, complementary lab stability assessment tests were performed. In this contribution, both the in-flight and lab experimental methodology and the corresponding technical aspects will be discussed in detail. Furthermore, attention will be paid to the issues of packaging and radiation. The importance of the OSCAR-balloon experiment is not only that it has demonstrated for the first time the use of organic-based solar cells in (aero)space conditions but also that it can be considered as the pioneering start of specific stability assessment methodologies for organic-based solar cells for (aero)space applications. The OSCAR project was developed in the framework of the REXUS/BEXUS program. This program is a joint collaborative agreement between the German Aerospace Center (DLR) and the Swedish National Space Board (SNSB), where the Swedish share of the balloon payload is made available for European university student experiments with collaboration of the European Space Agency (ESA). Other partners include EuroLaunch, a collaboration between the Esrange Space Center (SSC), which is the launching facility in Kiruna (Sweden) and the Mobile Rocket Base (MORABA) of DLR. Experts of all involved parties are provided throughout the project for technical support. The authors deeply thank M. De Roeve, R. Lempens, J. Soogen, K. Daniëls, J. Boutsenand J. Mertens for the technical help, and K. Wouters and M.A. Beynaerts for their support during testing. IMEC vzw is acknowledged for their availability with sample supplies and encapsulation. For the small molecule-based devices thanks are due to TU/Dresden. For the polymerbased devices, the authors would like to thank the DSOS research group at ...
format Article in Journal/Newspaper
author Schreurs, Dieter
Nagels, Steven
Cardinaletti, Ilaria
Vangerven, Tim
Cornelissen, Rob
Vodnik, Jelle
Hruby, Jaroslav
Deferme, Wim
Manca, Jean V.
author_facet Schreurs, Dieter
Nagels, Steven
Cardinaletti, Ilaria
Vangerven, Tim
Cornelissen, Rob
Vodnik, Jelle
Hruby, Jaroslav
Deferme, Wim
Manca, Jean V.
author_sort Schreurs, Dieter
title Methodology of the first combined in-flight and ex situ stability assessment of organic-based solar cells for space applications
title_short Methodology of the first combined in-flight and ex situ stability assessment of organic-based solar cells for space applications
title_full Methodology of the first combined in-flight and ex situ stability assessment of organic-based solar cells for space applications
title_fullStr Methodology of the first combined in-flight and ex situ stability assessment of organic-based solar cells for space applications
title_full_unstemmed Methodology of the first combined in-flight and ex situ stability assessment of organic-based solar cells for space applications
title_sort methodology of the first combined in-flight and ex situ stability assessment of organic-based solar cells for space applications
publishDate 2018
url http://hdl.handle.net/1942/26129
https://doi.org/10.1557/jmr.2018.156
long_lat ENVELOPE(21.117,21.117,67.883,67.883)
geographic Esrange
Kiruna
geographic_facet Esrange
Kiruna
genre Kiruna
genre_facet Kiruna
op_relation REFERENCES 1. M. Kaltenbrunner, M. White, E. Glowacki, T. Sekitani, T. Someya, N. Sariciftci, and S. Bauer: Ultrathin and lightweight organic solar cells with high flexibility. Nat. Commun. 3, 770 (2012). 2. G. Pirotte, J. Kesters, P. Verstappen, S. Govaerts, J. Manca, L. Lutsen, D. Vanderzande, and W. Maes: Continuous flow polymer synthesis toward reproducible large-scale production for efficient bulk heterojunction organic solar cells. ChemSusChem 8, 3228–3233 (2015). 3. P. Verstappen, J. Kesters, W. Vanormelingen, G. Heintges, J. Drijkoningen, T. Vangerven, L. Marin, S. Koudjina, B. Champagne, J. Manca, L. Lutsen, D. Vanderzande, and W. Maes: Fluorination as an effective tool to increase the opencircuit voltage and charge carrier mobility of organic solar cells based on poly(cyclopenta[2,1-b:3,4-b9]dithiophene-alt-quinoxaline) copolymers. J. Mater. Chem. A 3, 2960–2970 (2015). 4. J. Widmer, M. Tietze, K. Leo, and M. Riede: Open-circuit voltage and effective gap of organic solar cells. Adv. Funct. Mater. 23, 5814–5821 (2013). 5. T. Moench, P. Friederich, F. Holzmueller, B. Rutkowski, J. Benduhn, T. Strunk, C. Koerner, K. Vandewal, A. Czyrska-Filemonowicz, W. Wenzel, and K. Leo: Influence of meso and nanoscale structure on the properties of highly efficient small molecule solar cells. Adv. Energy Mater. 6, 1501280 (2016). 6. I. Cardinaletti, T. Vangerven, S. Nagels, R. Cornelissen, D. Schreurs, J. Hruby, J. Vodnik, D. Devisscher, J. Kesters, J. D’Haen, A. Franquet, V. Spampinato, T. Conard, W. Maes, W. Deferme, and J. Manca: Organic and perovskite solar cells for space applications. Sol. Energy Mater. Sol. Cells 182, 121–127 (2018). 7. I. Cardinaletti: Nano-morphology and macro-performance of organic and perovskite solar cells: From terrestrial to space applications. Ph.D. thesis, 2017. Available at: https://doclib.uhas- AU4 selt.be/dspace/handle/1942/25015. 8. B. Siegmund, A. Mischok, J. Benduhn, O. Zeikq, S. Ullbrich, F. Nehm, M. Böhm, D. Spoltore, H. Fröb, C. Körner, K. Leo, and K. Vandewal: Organic narrowband near-infrared photodetectors based on intermolecular charge-transfer absorption. Nat. Commun. 8, 15421 (2017). 9. S. Guo, C. Brandt, T. Andreev, E. Metwalli, W. Wang, J. Perlich, and P. Müler-Buschbaum: First step into space: Performance and morphological evolution of P3HT:PCBM bulk heterojunction solar cells under AM0 illumination. ACS Appl. Mater. Interfaces 6, 17902–17910 (2014). 10. I. Riedel, J. Parisi, V. Dyakonov, L. Lutsen, D. Vanderzande, and J.C. Hummelen: Effect of temperature and illumination on the electrical characteristics of polymer–fullerene bulk-heterojunction solar cells. Adv. Funct. Mater. 14, 38–43 (2004). 11. Y. Park, S. Noh, D. Lee, J.Y. Kim, and C. Lee: Temperature and light intensity dependence of polymer solar cells with MoO3 and PEDOT:PSS as a buffer layer. J. Korean Phys. Soc. 59, 362–366 (2011). 12. A. Kumar, N. Rosen, R. Devine, and Y. Yang: Interface design to improve stability of polymer solar cells for potential space applications. Energy Environ. Sci. 4, 4917–4920 (2011). 13. A. Kumar, R. Devine, C. Mayberry, B. Lei, G. Li, and Y. Yang: Origin of radiation-induced degradation in polymer solar cells. Adv. Funct. Mater. 20, 2729–2736 (2010). 14. V. Voevodskii and Y.N. Molin: On the radiation stability of solid organic compounds. Radiat. Res. 17, 366–378 (1962). 15. F. Lang, N. Nickel, J. Bundesmann, S. Seidel, A. Denker, S. Albrecht, V. Brus, J. Rappich, B. Rech, G. Landi, and H. Neitzert: Radiation hardness and self-healing of perovskite solar cells. Adv. Mater. 28, 8726–8731 (2016). 16. M. Reese, S. Gevorgyan, M. Jørgensen, E. Bundgaard, S. Kurtz, D. Ginley, D. Olson, M. Lloyd, P. Morvillo, E. Katz, A. Elschner, O. Haillant, T. Currier, V. Shrotriya, M. Hermenau, M. Riede, K. Kirov, G. Trimmel, T. Rath, O. Inganäs, F. Zhang, M. Andersson, K. Tvingstedt, M. Lira-Cantu, D. Laird, C. McGuiness, S. Gowrisanker, M. Pannone, M. Xiao, J. Hauch, R. Steim, D. DeLongchamp, R. Rösch, H. Hoppe, N. Espinosa, A. Urbina, G. Yaman-Uzunoglu, J-B. Bonekamp, A. van Breemen, C. Girotto, E. Voroshazi, and F. Krebs: Consensus stability testing protocals for organic photovoltaic materials and devices. Sol. Energy Mater. Sol. Cells 95, 1253–1267 (2011). 17. N. Bristow and J. Kettle: Outdoor performance of organic photovoltaics: Diurnal analysis, dependence on temperature, irradiance, and degradation. J. Renewable Sustainable Energy 7, 013111 (2015). 18. I. Cardinaletti, J. Kesters, S. Bertho, B. Conings, F. Piersimoni, J. D’Haen, L. Lutsen, M. Nesladek, B. Van Mele, G. Van Assche, K. Vandewal, A. Salleo, D. Vanderzande, W. Maes, and J. Manca: Towards bulk heterojunction polymer solar cells with thermally stable active layer morphology. J. Photonics Energy 4, 040997 (2014). 19. S. Bertho, I. Haeldermans, A. Swinnen, W. Moons, T. Martens, L. Lutsen, D. Vanderzande, J. Manca, A. Senes, and A. Bonfiglio: Influence of thermal ageing on the stability of polymer bulk heterojunction solar cells. Sol. Energy Mater. Sol. Cells 91, 385–389 (2007). 20. H. Zhang, X. Qiao, Y. Shen, and M. Wang: Effect of temperature on the efficiency of organometallic perovskite solar cells. J. Energy Chem. 24, 729–735 (2015).
JOURNAL OF MATERIALS RESEARCH, 33 (13), p. 1841-1852
0884-2914
http://hdl.handle.net/1942/26129
1852
13
1841
33
doi:10.1557/jmr.2018.156
000438739300002
op_rights info:eu-repo/semantics/openAccess
op_doi https://doi.org/10.1557/jmr.2018.156
container_title Journal of Materials Research
container_volume 33
container_issue 13
container_start_page 1841
op_container_end_page 1852
_version_ 1766058432339640320
spelling ftunivhasselt:oai:documentserver.uhasselt.be:1942/26129 2023-05-15T17:04:21+02:00 Methodology of the first combined in-flight and ex situ stability assessment of organic-based solar cells for space applications Schreurs, Dieter Nagels, Steven Cardinaletti, Ilaria Vangerven, Tim Cornelissen, Rob Vodnik, Jelle Hruby, Jaroslav Deferme, Wim Manca, Jean V. 2018 application/pdf http://hdl.handle.net/1942/26129 https://doi.org/10.1557/jmr.2018.156 en eng REFERENCES 1. M. Kaltenbrunner, M. White, E. Glowacki, T. Sekitani, T. Someya, N. Sariciftci, and S. Bauer: Ultrathin and lightweight organic solar cells with high flexibility. Nat. Commun. 3, 770 (2012). 2. G. Pirotte, J. Kesters, P. Verstappen, S. Govaerts, J. Manca, L. Lutsen, D. Vanderzande, and W. Maes: Continuous flow polymer synthesis toward reproducible large-scale production for efficient bulk heterojunction organic solar cells. ChemSusChem 8, 3228–3233 (2015). 3. P. Verstappen, J. Kesters, W. Vanormelingen, G. Heintges, J. Drijkoningen, T. Vangerven, L. Marin, S. Koudjina, B. Champagne, J. Manca, L. Lutsen, D. Vanderzande, and W. Maes: Fluorination as an effective tool to increase the opencircuit voltage and charge carrier mobility of organic solar cells based on poly(cyclopenta[2,1-b:3,4-b9]dithiophene-alt-quinoxaline) copolymers. J. Mater. Chem. A 3, 2960–2970 (2015). 4. J. Widmer, M. Tietze, K. Leo, and M. Riede: Open-circuit voltage and effective gap of organic solar cells. Adv. Funct. Mater. 23, 5814–5821 (2013). 5. T. Moench, P. Friederich, F. Holzmueller, B. Rutkowski, J. Benduhn, T. Strunk, C. Koerner, K. Vandewal, A. Czyrska-Filemonowicz, W. Wenzel, and K. Leo: Influence of meso and nanoscale structure on the properties of highly efficient small molecule solar cells. Adv. Energy Mater. 6, 1501280 (2016). 6. I. Cardinaletti, T. Vangerven, S. Nagels, R. Cornelissen, D. Schreurs, J. Hruby, J. Vodnik, D. Devisscher, J. Kesters, J. D’Haen, A. Franquet, V. Spampinato, T. Conard, W. Maes, W. Deferme, and J. Manca: Organic and perovskite solar cells for space applications. Sol. Energy Mater. Sol. Cells 182, 121–127 (2018). 7. I. Cardinaletti: Nano-morphology and macro-performance of organic and perovskite solar cells: From terrestrial to space applications. Ph.D. thesis, 2017. Available at: https://doclib.uhas- AU4 selt.be/dspace/handle/1942/25015. 8. B. Siegmund, A. Mischok, J. Benduhn, O. Zeikq, S. Ullbrich, F. Nehm, M. Böhm, D. Spoltore, H. Fröb, C. Körner, K. Leo, and K. Vandewal: Organic narrowband near-infrared photodetectors based on intermolecular charge-transfer absorption. Nat. Commun. 8, 15421 (2017). 9. S. Guo, C. Brandt, T. Andreev, E. Metwalli, W. Wang, J. Perlich, and P. Müler-Buschbaum: First step into space: Performance and morphological evolution of P3HT:PCBM bulk heterojunction solar cells under AM0 illumination. ACS Appl. Mater. Interfaces 6, 17902–17910 (2014). 10. I. Riedel, J. Parisi, V. Dyakonov, L. Lutsen, D. Vanderzande, and J.C. Hummelen: Effect of temperature and illumination on the electrical characteristics of polymer–fullerene bulk-heterojunction solar cells. Adv. Funct. Mater. 14, 38–43 (2004). 11. Y. Park, S. Noh, D. Lee, J.Y. Kim, and C. Lee: Temperature and light intensity dependence of polymer solar cells with MoO3 and PEDOT:PSS as a buffer layer. J. Korean Phys. Soc. 59, 362–366 (2011). 12. A. Kumar, N. Rosen, R. Devine, and Y. Yang: Interface design to improve stability of polymer solar cells for potential space applications. Energy Environ. Sci. 4, 4917–4920 (2011). 13. A. Kumar, R. Devine, C. Mayberry, B. Lei, G. Li, and Y. Yang: Origin of radiation-induced degradation in polymer solar cells. Adv. Funct. Mater. 20, 2729–2736 (2010). 14. V. Voevodskii and Y.N. Molin: On the radiation stability of solid organic compounds. Radiat. Res. 17, 366–378 (1962). 15. F. Lang, N. Nickel, J. Bundesmann, S. Seidel, A. Denker, S. Albrecht, V. Brus, J. Rappich, B. Rech, G. Landi, and H. Neitzert: Radiation hardness and self-healing of perovskite solar cells. Adv. Mater. 28, 8726–8731 (2016). 16. M. Reese, S. Gevorgyan, M. Jørgensen, E. Bundgaard, S. Kurtz, D. Ginley, D. Olson, M. Lloyd, P. Morvillo, E. Katz, A. Elschner, O. Haillant, T. Currier, V. Shrotriya, M. Hermenau, M. Riede, K. Kirov, G. Trimmel, T. Rath, O. Inganäs, F. Zhang, M. Andersson, K. Tvingstedt, M. Lira-Cantu, D. Laird, C. McGuiness, S. Gowrisanker, M. Pannone, M. Xiao, J. Hauch, R. Steim, D. DeLongchamp, R. Rösch, H. Hoppe, N. Espinosa, A. Urbina, G. Yaman-Uzunoglu, J-B. Bonekamp, A. van Breemen, C. Girotto, E. Voroshazi, and F. Krebs: Consensus stability testing protocals for organic photovoltaic materials and devices. Sol. Energy Mater. Sol. Cells 95, 1253–1267 (2011). 17. N. Bristow and J. Kettle: Outdoor performance of organic photovoltaics: Diurnal analysis, dependence on temperature, irradiance, and degradation. J. Renewable Sustainable Energy 7, 013111 (2015). 18. I. Cardinaletti, J. Kesters, S. Bertho, B. Conings, F. Piersimoni, J. D’Haen, L. Lutsen, M. Nesladek, B. Van Mele, G. Van Assche, K. Vandewal, A. Salleo, D. Vanderzande, W. Maes, and J. Manca: Towards bulk heterojunction polymer solar cells with thermally stable active layer morphology. J. Photonics Energy 4, 040997 (2014). 19. S. Bertho, I. Haeldermans, A. Swinnen, W. Moons, T. Martens, L. Lutsen, D. Vanderzande, J. Manca, A. Senes, and A. Bonfiglio: Influence of thermal ageing on the stability of polymer bulk heterojunction solar cells. Sol. Energy Mater. Sol. Cells 91, 385–389 (2007). 20. H. Zhang, X. Qiao, Y. Shen, and M. Wang: Effect of temperature on the efficiency of organometallic perovskite solar cells. J. Energy Chem. 24, 729–735 (2015). JOURNAL OF MATERIALS RESEARCH, 33 (13), p. 1841-1852 0884-2914 http://hdl.handle.net/1942/26129 1852 13 1841 33 doi:10.1557/jmr.2018.156 000438739300002 info:eu-repo/semantics/openAccess OSCAR OPV in-situ organic solar cell organic photovoltaic solar cell aerospace space info:eu-repo/semantics/article 2018 ftunivhasselt https://doi.org/10.1557/jmr.2018.156 2022-08-11T12:24:47Z One of the key aims of the OSCAR project (Optical Sensors based on CARbon-materials)—in the framework of the REXUS/BEXUS program—was to explore the use of organic-based solar cells for (aero)space applications through the in-flight investigation of devices’ performance during a stratospheric balloon flight. Next to the in-flight experiments, complementary lab stability assessment tests were performed. In this contribution, both the in-flight and lab experimental methodology and the corresponding technical aspects will be discussed in detail. Furthermore, attention will be paid to the issues of packaging and radiation. The importance of the OSCAR-balloon experiment is not only that it has demonstrated for the first time the use of organic-based solar cells in (aero)space conditions but also that it can be considered as the pioneering start of specific stability assessment methodologies for organic-based solar cells for (aero)space applications. The OSCAR project was developed in the framework of the REXUS/BEXUS program. This program is a joint collaborative agreement between the German Aerospace Center (DLR) and the Swedish National Space Board (SNSB), where the Swedish share of the balloon payload is made available for European university student experiments with collaboration of the European Space Agency (ESA). Other partners include EuroLaunch, a collaboration between the Esrange Space Center (SSC), which is the launching facility in Kiruna (Sweden) and the Mobile Rocket Base (MORABA) of DLR. Experts of all involved parties are provided throughout the project for technical support. The authors deeply thank M. De Roeve, R. Lempens, J. Soogen, K. Daniëls, J. Boutsenand J. Mertens for the technical help, and K. Wouters and M.A. Beynaerts for their support during testing. IMEC vzw is acknowledged for their availability with sample supplies and encapsulation. For the small molecule-based devices thanks are due to TU/Dresden. For the polymerbased devices, the authors would like to thank the DSOS research group at ... Article in Journal/Newspaper Kiruna Document Server@UHasselt (Hasselt University) Esrange ENVELOPE(21.117,21.117,67.883,67.883) Kiruna Journal of Materials Research 33 13 1841 1852