Spatiotemporal changes in aerosol properties by hygroscopic growth and impacts on radiative forcing and heating rates during DISCOVER-AQ 2011

This research has been supported by the H2020 Marie Sklodowska-Curie Actions (grant no. 778349), the Spanish Ministry of Economy and Competitiveness (RTI2018101154.A.I00), and by the Russian Science Foundation (project 2117-00114, entitled Development of lidar retrieval algorithms). This work focuse...

Full description

Bibliographic Details
Published in:Atmospheric Chemistry and Physics
Main Authors: Pérez Ramírez, Daniel, Titos Vela, Gloria, Granados Muñoz, María José, Sánchez Hernández, Guadalupe, Navas Guzmán, Francisco
Format: Article in Journal/Newspaper
Language:English
Published: Copernicus GmbH 2021
Subjects:
Online Access:http://hdl.handle.net/10481/70570
https://doi.org/10.5194/acp-21-12021-2021
id ftunivgranada:oai:digibug.ugr.es:10481/70570
record_format openpolar
institution Open Polar
collection DIGIBUG: Repositorio Institucional de la Universidad de Granada
op_collection_id ftunivgranada
language English
description This research has been supported by the H2020 Marie Sklodowska-Curie Actions (grant no. 778349), the Spanish Ministry of Economy and Competitiveness (RTI2018101154.A.I00), and by the Russian Science Foundation (project 2117-00114, entitled Development of lidar retrieval algorithms). This work focuses on the characterization of vertically resolved aerosol hygroscopicity properties and their direct radiative effects through a unique combination of ground-based and airborne remote sensing measurements during the Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) 2011 field campaign in the Baltimore-Washington DC metropolitan area. To that end, we combined aerosol measurements from a multiwavelength Raman lidar located at NASA Goddard Space Flight Center and the airborne NASA Langley High Spectral Resolution Lidar-1 (HSRL-1) lidar system. In situ measurements aboard the P-3B airplane and ground-based Aerosol Robotic Network - Distributed Regional Aerosol Gridded Observational Network (AERONET-DRAGON) served to validate and complement quantifications of aerosol hygroscopicity from lidar measurements and also to extend the study both temporally and spatially. The focus here is on 22 and 29 July 2011, which were very humid days and characterized by a stable atmosphere and increasing relative humidity with height in the planetary boundary layer (PBL). Combined lidar and radiosonde (temperature and water vapor mixing ratio) measurements allowed the retrieval of the Hanel hygroscopic growth factor which agreed with that obtained from airborne in situ measurements and also explained the significant increase of extinction and backscattering with height. Airborne measurements also confirmed aerosol hygroscopicity throughout the entire day in the PBL and identified sulfates and water-soluble organic carbon as the main species of aerosol particles. The combined Raman and HSRL-1 measurements permitted the inversion for aerosol microphysical properties revealing an increase of particle radius with altitude consistent with hygroscopic growth. Aerosol hygroscopicity pattern served as a possible explanation of aerosol optical depth increases during the day, particularly for fine-mode particles. Lidar measurements were used as input to the libRadtran radiative transfer code to obtain vertically resolved aerosol radiative effects and heating rates under dry and humid conditions, and the results reveal that aerosol hygroscopicity is responsible for larger cooling effects in the shortwave range (7-10 W m(-2) depending on aerosol load) near the ground, while heating rates produced a warming of 0.12 K d(-1) near the top of PBL where aerosol hygroscopic growth was highest. H2020 Marie Sklodowska-Curie Actions 778349 Spanish Ministry of Economy and Competitiveness RTI2018101154.A.I00 Russian Science Foundation (RSF) 2117-00114
format Article in Journal/Newspaper
author Pérez Ramírez, Daniel
Titos Vela, Gloria
Granados Muñoz, María José
Sánchez Hernández, Guadalupe
Navas Guzmán, Francisco
spellingShingle Pérez Ramírez, Daniel
Titos Vela, Gloria
Granados Muñoz, María José
Sánchez Hernández, Guadalupe
Navas Guzmán, Francisco
Spatiotemporal changes in aerosol properties by hygroscopic growth and impacts on radiative forcing and heating rates during DISCOVER-AQ 2011
author_facet Pérez Ramírez, Daniel
Titos Vela, Gloria
Granados Muñoz, María José
Sánchez Hernández, Guadalupe
Navas Guzmán, Francisco
author_sort Pérez Ramírez, Daniel
title Spatiotemporal changes in aerosol properties by hygroscopic growth and impacts on radiative forcing and heating rates during DISCOVER-AQ 2011
title_short Spatiotemporal changes in aerosol properties by hygroscopic growth and impacts on radiative forcing and heating rates during DISCOVER-AQ 2011
title_full Spatiotemporal changes in aerosol properties by hygroscopic growth and impacts on radiative forcing and heating rates during DISCOVER-AQ 2011
title_fullStr Spatiotemporal changes in aerosol properties by hygroscopic growth and impacts on radiative forcing and heating rates during DISCOVER-AQ 2011
title_full_unstemmed Spatiotemporal changes in aerosol properties by hygroscopic growth and impacts on radiative forcing and heating rates during DISCOVER-AQ 2011
title_sort spatiotemporal changes in aerosol properties by hygroscopic growth and impacts on radiative forcing and heating rates during discover-aq 2011
publisher Copernicus GmbH
publishDate 2021
url http://hdl.handle.net/10481/70570
https://doi.org/10.5194/acp-21-12021-2021
genre Aerosol Robotic Network
genre_facet Aerosol Robotic Network
op_relation info:eu-repo/grantAgreement/EC/H2020/778349
Pérez-Ramírez, D. [et al.] (2021). Spatiotemporal changes in aerosol properties by hygroscopic growth and impacts on radiative forcing and heating rates during DISCOVER-AQ 2011. Atmospheric Chemistry and Physics Discussions, 1-40. [https://doi.org/10.5194/acp-21-12021-2021]
http://hdl.handle.net/10481/70570
doi:10.5194/acp-21-12021-2021
op_rights Atribución 3.0 España
http://creativecommons.org/licenses/by/3.0/es/
info:eu-repo/semantics/openAccess
op_rightsnorm CC-BY
op_doi https://doi.org/10.5194/acp-21-12021-2021
container_title Atmospheric Chemistry and Physics
container_volume 21
container_issue 15
container_start_page 12021
op_container_end_page 12048
_version_ 1766042932825030656
spelling ftunivgranada:oai:digibug.ugr.es:10481/70570 2023-05-15T13:07:15+02:00 Spatiotemporal changes in aerosol properties by hygroscopic growth and impacts on radiative forcing and heating rates during DISCOVER-AQ 2011 Pérez Ramírez, Daniel Titos Vela, Gloria Granados Muñoz, María José Sánchez Hernández, Guadalupe Navas Guzmán, Francisco 2021-08-11 http://hdl.handle.net/10481/70570 https://doi.org/10.5194/acp-21-12021-2021 eng eng Copernicus GmbH info:eu-repo/grantAgreement/EC/H2020/778349 Pérez-Ramírez, D. [et al.] (2021). Spatiotemporal changes in aerosol properties by hygroscopic growth and impacts on radiative forcing and heating rates during DISCOVER-AQ 2011. Atmospheric Chemistry and Physics Discussions, 1-40. [https://doi.org/10.5194/acp-21-12021-2021] http://hdl.handle.net/10481/70570 doi:10.5194/acp-21-12021-2021 Atribución 3.0 España http://creativecommons.org/licenses/by/3.0/es/ info:eu-repo/semantics/openAccess CC-BY info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion 2021 ftunivgranada https://doi.org/10.5194/acp-21-12021-2021 2021-10-12T23:21:38Z This research has been supported by the H2020 Marie Sklodowska-Curie Actions (grant no. 778349), the Spanish Ministry of Economy and Competitiveness (RTI2018101154.A.I00), and by the Russian Science Foundation (project 2117-00114, entitled Development of lidar retrieval algorithms). This work focuses on the characterization of vertically resolved aerosol hygroscopicity properties and their direct radiative effects through a unique combination of ground-based and airborne remote sensing measurements during the Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) 2011 field campaign in the Baltimore-Washington DC metropolitan area. To that end, we combined aerosol measurements from a multiwavelength Raman lidar located at NASA Goddard Space Flight Center and the airborne NASA Langley High Spectral Resolution Lidar-1 (HSRL-1) lidar system. In situ measurements aboard the P-3B airplane and ground-based Aerosol Robotic Network - Distributed Regional Aerosol Gridded Observational Network (AERONET-DRAGON) served to validate and complement quantifications of aerosol hygroscopicity from lidar measurements and also to extend the study both temporally and spatially. The focus here is on 22 and 29 July 2011, which were very humid days and characterized by a stable atmosphere and increasing relative humidity with height in the planetary boundary layer (PBL). Combined lidar and radiosonde (temperature and water vapor mixing ratio) measurements allowed the retrieval of the Hanel hygroscopic growth factor which agreed with that obtained from airborne in situ measurements and also explained the significant increase of extinction and backscattering with height. Airborne measurements also confirmed aerosol hygroscopicity throughout the entire day in the PBL and identified sulfates and water-soluble organic carbon as the main species of aerosol particles. The combined Raman and HSRL-1 measurements permitted the inversion for aerosol microphysical properties revealing an increase of particle radius with altitude consistent with hygroscopic growth. Aerosol hygroscopicity pattern served as a possible explanation of aerosol optical depth increases during the day, particularly for fine-mode particles. Lidar measurements were used as input to the libRadtran radiative transfer code to obtain vertically resolved aerosol radiative effects and heating rates under dry and humid conditions, and the results reveal that aerosol hygroscopicity is responsible for larger cooling effects in the shortwave range (7-10 W m(-2) depending on aerosol load) near the ground, while heating rates produced a warming of 0.12 K d(-1) near the top of PBL where aerosol hygroscopic growth was highest. H2020 Marie Sklodowska-Curie Actions 778349 Spanish Ministry of Economy and Competitiveness RTI2018101154.A.I00 Russian Science Foundation (RSF) 2117-00114 Article in Journal/Newspaper Aerosol Robotic Network DIGIBUG: Repositorio Institucional de la Universidad de Granada Atmospheric Chemistry and Physics 21 15 12021 12048