Enabling hydrate-based methane storage under mild operating conditions by periodic mesoporous organosilica nanotubes

Biomethane is a renewable natural gas substitute produced from biogas. Storage of this sustainable energy vector in confined clathrate hydrates, encapsulated in the pores of a host material, is a highly promising avenue to improve storage capacity and energy efficiency. Herein, a new type of periodi...

Full description

Bibliographic Details
Published in:Heliyon
Main Authors: Beckwée, Emile Jules, Watson, Geert, Houlleberghs, Maarten, Arenas Esteban, Daniel, Bals, Sara, Van Der Voort, Pascal, Breynaert, Eric, Martens, Johan, Baron, Gino V., Denayer, Joeri F.M.
Format: Article in Journal/Newspaper
Language:English
Published: 2023
Subjects:
Online Access:https://biblio.ugent.be/publication/01H73BBVQMHMNKXZBAJ484V960
http://hdl.handle.net/1854/LU-01H73BBVQMHMNKXZBAJ484V960
https://doi.org/10.1016/j.heliyon.2023.e17662
https://biblio.ugent.be/publication/01H73BBVQMHMNKXZBAJ484V960/file/01H73BCZ9W4YZW39WEQBPH3BK8
id ftunivgent:oai:archive.ugent.be:01H73BBVQMHMNKXZBAJ484V960
record_format openpolar
spelling ftunivgent:oai:archive.ugent.be:01H73BBVQMHMNKXZBAJ484V960 2023-10-29T02:37:53+01:00 Enabling hydrate-based methane storage under mild operating conditions by periodic mesoporous organosilica nanotubes Beckwée, Emile Jules Watson, Geert Houlleberghs, Maarten Arenas Esteban, Daniel Bals, Sara Van Der Voort, Pascal Breynaert, Eric Martens, Johan Baron, Gino V. Denayer, Joeri F.M. 2023 application/pdf https://biblio.ugent.be/publication/01H73BBVQMHMNKXZBAJ484V960 http://hdl.handle.net/1854/LU-01H73BBVQMHMNKXZBAJ484V960 https://doi.org/10.1016/j.heliyon.2023.e17662 https://biblio.ugent.be/publication/01H73BBVQMHMNKXZBAJ484V960/file/01H73BCZ9W4YZW39WEQBPH3BK8 eng eng https://biblio.ugent.be/publication/01H73BBVQMHMNKXZBAJ484V960 http://hdl.handle.net/1854/LU-01H73BBVQMHMNKXZBAJ484V960 http://doi.org/10.1016/j.heliyon.2023.e17662 https://biblio.ugent.be/publication/01H73BBVQMHMNKXZBAJ484V960/file/01H73BCZ9W4YZW39WEQBPH3BK8 Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Public License (CC BY-NC-ND 4.0) info:eu-repo/semantics/closedAccess HELIYON ISSN: 2405-8440 Chemistry Multidisciplinary Biomethane Clathrate hydrate Methane hydrate Periodic mesoporous organosilica Pressure-swing (un)loading GAS-STORAGE POROUS-MEDIA ACTIVATED CARBON SILICA-GELS DRY WATER DISSOCIATION NUCLEATION EQUILIBRIUM ADSORPTION PARTICLES journalArticle info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion 2023 ftunivgent https://doi.org/10.1016/j.heliyon.2023.e17662 2023-10-04T22:07:11Z Biomethane is a renewable natural gas substitute produced from biogas. Storage of this sustainable energy vector in confined clathrate hydrates, encapsulated in the pores of a host material, is a highly promising avenue to improve storage capacity and energy efficiency. Herein, a new type of periodic mesoporous organosilica (PMO) nanotubes, referred to as hollow ring PMO (HR-PMO), capable of promoting methane clathrate hydrate formation under mild working conditions (273 K, 3.5 MPa) and at high water loading (5.1 g water/g HR-PMO) is reported. Gravimetric uptake measurements reveal a steep single-stepped isotherm and a noticeably high methane storage capacity (0.55 g methane/g HR-PMO; 0.11 g methane/g water at 3.5 MPa). The large working capacity throughout consecutive pressure-induced clathrate hydrate formationdissociation cycles demonstrates the material's excellent recyclability (97% preservation of capacity). Supported by ex situ cryo-electron tomography and x-ray diffraction, HR-PMO nanotubes are hypothesized to promote clathrate hydrate nucleation and growth by distribution and confinement of water in the mesopores of their outer wall, along the central channels of the nanotubes and on the external nanotube surface. These findings showcase the potential for application of organosilica materials with hierarchical and interconnected pore systems for pressure-based storage of biomethane in confined clathrate hydrates. Article in Journal/Newspaper Methane hydrate Ghent University Academic Bibliography Heliyon 9 7 e17662
institution Open Polar
collection Ghent University Academic Bibliography
op_collection_id ftunivgent
language English
topic Chemistry
Multidisciplinary
Biomethane
Clathrate hydrate
Methane hydrate
Periodic mesoporous organosilica
Pressure-swing (un)loading
GAS-STORAGE
POROUS-MEDIA
ACTIVATED CARBON
SILICA-GELS
DRY WATER
DISSOCIATION
NUCLEATION
EQUILIBRIUM
ADSORPTION
PARTICLES
spellingShingle Chemistry
Multidisciplinary
Biomethane
Clathrate hydrate
Methane hydrate
Periodic mesoporous organosilica
Pressure-swing (un)loading
GAS-STORAGE
POROUS-MEDIA
ACTIVATED CARBON
SILICA-GELS
DRY WATER
DISSOCIATION
NUCLEATION
EQUILIBRIUM
ADSORPTION
PARTICLES
Beckwée, Emile Jules
Watson, Geert
Houlleberghs, Maarten
Arenas Esteban, Daniel
Bals, Sara
Van Der Voort, Pascal
Breynaert, Eric
Martens, Johan
Baron, Gino V.
Denayer, Joeri F.M.
Enabling hydrate-based methane storage under mild operating conditions by periodic mesoporous organosilica nanotubes
topic_facet Chemistry
Multidisciplinary
Biomethane
Clathrate hydrate
Methane hydrate
Periodic mesoporous organosilica
Pressure-swing (un)loading
GAS-STORAGE
POROUS-MEDIA
ACTIVATED CARBON
SILICA-GELS
DRY WATER
DISSOCIATION
NUCLEATION
EQUILIBRIUM
ADSORPTION
PARTICLES
description Biomethane is a renewable natural gas substitute produced from biogas. Storage of this sustainable energy vector in confined clathrate hydrates, encapsulated in the pores of a host material, is a highly promising avenue to improve storage capacity and energy efficiency. Herein, a new type of periodic mesoporous organosilica (PMO) nanotubes, referred to as hollow ring PMO (HR-PMO), capable of promoting methane clathrate hydrate formation under mild working conditions (273 K, 3.5 MPa) and at high water loading (5.1 g water/g HR-PMO) is reported. Gravimetric uptake measurements reveal a steep single-stepped isotherm and a noticeably high methane storage capacity (0.55 g methane/g HR-PMO; 0.11 g methane/g water at 3.5 MPa). The large working capacity throughout consecutive pressure-induced clathrate hydrate formationdissociation cycles demonstrates the material's excellent recyclability (97% preservation of capacity). Supported by ex situ cryo-electron tomography and x-ray diffraction, HR-PMO nanotubes are hypothesized to promote clathrate hydrate nucleation and growth by distribution and confinement of water in the mesopores of their outer wall, along the central channels of the nanotubes and on the external nanotube surface. These findings showcase the potential for application of organosilica materials with hierarchical and interconnected pore systems for pressure-based storage of biomethane in confined clathrate hydrates.
format Article in Journal/Newspaper
author Beckwée, Emile Jules
Watson, Geert
Houlleberghs, Maarten
Arenas Esteban, Daniel
Bals, Sara
Van Der Voort, Pascal
Breynaert, Eric
Martens, Johan
Baron, Gino V.
Denayer, Joeri F.M.
author_facet Beckwée, Emile Jules
Watson, Geert
Houlleberghs, Maarten
Arenas Esteban, Daniel
Bals, Sara
Van Der Voort, Pascal
Breynaert, Eric
Martens, Johan
Baron, Gino V.
Denayer, Joeri F.M.
author_sort Beckwée, Emile Jules
title Enabling hydrate-based methane storage under mild operating conditions by periodic mesoporous organosilica nanotubes
title_short Enabling hydrate-based methane storage under mild operating conditions by periodic mesoporous organosilica nanotubes
title_full Enabling hydrate-based methane storage under mild operating conditions by periodic mesoporous organosilica nanotubes
title_fullStr Enabling hydrate-based methane storage under mild operating conditions by periodic mesoporous organosilica nanotubes
title_full_unstemmed Enabling hydrate-based methane storage under mild operating conditions by periodic mesoporous organosilica nanotubes
title_sort enabling hydrate-based methane storage under mild operating conditions by periodic mesoporous organosilica nanotubes
publishDate 2023
url https://biblio.ugent.be/publication/01H73BBVQMHMNKXZBAJ484V960
http://hdl.handle.net/1854/LU-01H73BBVQMHMNKXZBAJ484V960
https://doi.org/10.1016/j.heliyon.2023.e17662
https://biblio.ugent.be/publication/01H73BBVQMHMNKXZBAJ484V960/file/01H73BCZ9W4YZW39WEQBPH3BK8
genre Methane hydrate
genre_facet Methane hydrate
op_source HELIYON
ISSN: 2405-8440
op_relation https://biblio.ugent.be/publication/01H73BBVQMHMNKXZBAJ484V960
http://hdl.handle.net/1854/LU-01H73BBVQMHMNKXZBAJ484V960
http://doi.org/10.1016/j.heliyon.2023.e17662
https://biblio.ugent.be/publication/01H73BBVQMHMNKXZBAJ484V960/file/01H73BCZ9W4YZW39WEQBPH3BK8
op_rights Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Public License (CC BY-NC-ND 4.0)
info:eu-repo/semantics/closedAccess
op_doi https://doi.org/10.1016/j.heliyon.2023.e17662
container_title Heliyon
container_volume 9
container_issue 7
container_start_page e17662
_version_ 1781063079538196480