Elevated water CO2 can prevent dietary-induced osteomalacia in post-smolt Atlantic salmon (Salmo salar, L.)

Expansion of land-based systems in fish farms elevate the content of metabolic carbon dioxide (CO2) in the water. High CO2 is suggested to increase the bone mineral content in Atlantic salmon (Salmo salar, L.). Conversely, low dietary phosphorus (P) halts bone mineralization. This study examines if...

Full description

Bibliographic Details
Published in:Biomolecules
Main Authors: Drábiková, Lucia, Fjelldal, Per Gunnar, Yousaf, Muhammad Naveed, Morken, Thea, De Clercq, Adelbert, McGurk, Charles, Witten, Paul Eckhard
Format: Article in Journal/Newspaper
Language:English
Published: 2023
Subjects:
CO2
Online Access:https://biblio.ugent.be/publication/01H035F613V87NFT99VTXWZTX4
http://hdl.handle.net/1854/LU-01H035F613V87NFT99VTXWZTX4
https://doi.org/10.3390/biom13040663
https://biblio.ugent.be/publication/01H035F613V87NFT99VTXWZTX4/file/01H035R3W9J1VRKMJC4EF0XZK2
id ftunivgent:oai:archive.ugent.be:01H035F613V87NFT99VTXWZTX4
record_format openpolar
spelling ftunivgent:oai:archive.ugent.be:01H035F613V87NFT99VTXWZTX4 2023-10-01T03:54:34+02:00 Elevated water CO2 can prevent dietary-induced osteomalacia in post-smolt Atlantic salmon (Salmo salar, L.) Drábiková, Lucia Fjelldal, Per Gunnar Yousaf, Muhammad Naveed Morken, Thea De Clercq, Adelbert McGurk, Charles Witten, Paul Eckhard 2023 application/pdf https://biblio.ugent.be/publication/01H035F613V87NFT99VTXWZTX4 http://hdl.handle.net/1854/LU-01H035F613V87NFT99VTXWZTX4 https://doi.org/10.3390/biom13040663 https://biblio.ugent.be/publication/01H035F613V87NFT99VTXWZTX4/file/01H035R3W9J1VRKMJC4EF0XZK2 eng eng info:eu-repo/grantAgreement/EC/H2020/766347 https://biblio.ugent.be/publication/01H035F613V87NFT99VTXWZTX4 http://hdl.handle.net/1854/LU-01H035F613V87NFT99VTXWZTX4 http://dx.doi.org/10.3390/biom13040663 https://biblio.ugent.be/publication/01H035F613V87NFT99VTXWZTX4/file/01H035R3W9J1VRKMJC4EF0XZK2 Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) info:eu-repo/semantics/openAccess BIOMOLECULES ISSN: 2218-273X Biology and Life Sciences Molecular Biology Biochemistry CO2 dietary phosphorus bone mineralization Atlantic salmon skeleton fgf23 TROUT ONCORHYNCHUS-MYKISS DANIO-RERIO OSTARIOPHYSI EARLY SEAWATER PHASE RAINBOW-TROUT CARBON-DIOXIDE VERTEBRAL COLUMN FRESH-WATER NUTRIENT DIGESTIBILITIES OCEAN ACIDIFICATION GROWTH-PERFORMANCE journalArticle info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion 2023 ftunivgent https://doi.org/10.3390/biom13040663 2023-09-06T22:55:38Z Expansion of land-based systems in fish farms elevate the content of metabolic carbon dioxide (CO2) in the water. High CO2 is suggested to increase the bone mineral content in Atlantic salmon (Salmo salar, L.). Conversely, low dietary phosphorus (P) halts bone mineralization. This study examines if high CO2 can counteract reduced bone mineralization imposed by low dietary P intake. Atlantic salmon post-seawater transfer (initial weight 207.03 g) were fed diets containing 6.3 g/kg (0.5P), 9.0 g/kg (1P), or 26.8 g/kg (3P) total P for 13 weeks. Atlantic salmon from all dietary P groups were reared in seawater which was not injected with CO2 and contained a regular CO2 level (5 mg/L) or in seawater with injected CO2 thus raising the level to 20 mg/L. Atlantic salmon were analyzed for blood chemistry, bone mineral content, vertebral centra deformities, mechanical properties, bone matrix alterations, expression of bone mineralization, and P metabolism-related genes. High CO2 and high P reduced Atlantic salmon growth and feed intake. High CO2 increased bone mineralization when dietary P was low. Atlantic salmon fed with a low P diet downregulated the fgf23 expression in bone cells indicating an increased renal phosphate reabsorption. The current results suggest that reduced dietary P could be sufficient to maintain bone mineralization under conditions of elevated CO2. This opens up a possibility for lowering the dietary P content under certain farming conditions. Article in Journal/Newspaper Atlantic salmon Ocean acidification Salmo salar Ghent University Academic Bibliography Biomolecules 13 4 663
institution Open Polar
collection Ghent University Academic Bibliography
op_collection_id ftunivgent
language English
topic Biology and Life Sciences
Molecular Biology
Biochemistry
CO2
dietary phosphorus
bone mineralization
Atlantic salmon
skeleton
fgf23
TROUT ONCORHYNCHUS-MYKISS
DANIO-RERIO OSTARIOPHYSI
EARLY SEAWATER PHASE
RAINBOW-TROUT
CARBON-DIOXIDE
VERTEBRAL COLUMN
FRESH-WATER
NUTRIENT DIGESTIBILITIES
OCEAN ACIDIFICATION
GROWTH-PERFORMANCE
spellingShingle Biology and Life Sciences
Molecular Biology
Biochemistry
CO2
dietary phosphorus
bone mineralization
Atlantic salmon
skeleton
fgf23
TROUT ONCORHYNCHUS-MYKISS
DANIO-RERIO OSTARIOPHYSI
EARLY SEAWATER PHASE
RAINBOW-TROUT
CARBON-DIOXIDE
VERTEBRAL COLUMN
FRESH-WATER
NUTRIENT DIGESTIBILITIES
OCEAN ACIDIFICATION
GROWTH-PERFORMANCE
Drábiková, Lucia
Fjelldal, Per Gunnar
Yousaf, Muhammad Naveed
Morken, Thea
De Clercq, Adelbert
McGurk, Charles
Witten, Paul Eckhard
Elevated water CO2 can prevent dietary-induced osteomalacia in post-smolt Atlantic salmon (Salmo salar, L.)
topic_facet Biology and Life Sciences
Molecular Biology
Biochemistry
CO2
dietary phosphorus
bone mineralization
Atlantic salmon
skeleton
fgf23
TROUT ONCORHYNCHUS-MYKISS
DANIO-RERIO OSTARIOPHYSI
EARLY SEAWATER PHASE
RAINBOW-TROUT
CARBON-DIOXIDE
VERTEBRAL COLUMN
FRESH-WATER
NUTRIENT DIGESTIBILITIES
OCEAN ACIDIFICATION
GROWTH-PERFORMANCE
description Expansion of land-based systems in fish farms elevate the content of metabolic carbon dioxide (CO2) in the water. High CO2 is suggested to increase the bone mineral content in Atlantic salmon (Salmo salar, L.). Conversely, low dietary phosphorus (P) halts bone mineralization. This study examines if high CO2 can counteract reduced bone mineralization imposed by low dietary P intake. Atlantic salmon post-seawater transfer (initial weight 207.03 g) were fed diets containing 6.3 g/kg (0.5P), 9.0 g/kg (1P), or 26.8 g/kg (3P) total P for 13 weeks. Atlantic salmon from all dietary P groups were reared in seawater which was not injected with CO2 and contained a regular CO2 level (5 mg/L) or in seawater with injected CO2 thus raising the level to 20 mg/L. Atlantic salmon were analyzed for blood chemistry, bone mineral content, vertebral centra deformities, mechanical properties, bone matrix alterations, expression of bone mineralization, and P metabolism-related genes. High CO2 and high P reduced Atlantic salmon growth and feed intake. High CO2 increased bone mineralization when dietary P was low. Atlantic salmon fed with a low P diet downregulated the fgf23 expression in bone cells indicating an increased renal phosphate reabsorption. The current results suggest that reduced dietary P could be sufficient to maintain bone mineralization under conditions of elevated CO2. This opens up a possibility for lowering the dietary P content under certain farming conditions.
format Article in Journal/Newspaper
author Drábiková, Lucia
Fjelldal, Per Gunnar
Yousaf, Muhammad Naveed
Morken, Thea
De Clercq, Adelbert
McGurk, Charles
Witten, Paul Eckhard
author_facet Drábiková, Lucia
Fjelldal, Per Gunnar
Yousaf, Muhammad Naveed
Morken, Thea
De Clercq, Adelbert
McGurk, Charles
Witten, Paul Eckhard
author_sort Drábiková, Lucia
title Elevated water CO2 can prevent dietary-induced osteomalacia in post-smolt Atlantic salmon (Salmo salar, L.)
title_short Elevated water CO2 can prevent dietary-induced osteomalacia in post-smolt Atlantic salmon (Salmo salar, L.)
title_full Elevated water CO2 can prevent dietary-induced osteomalacia in post-smolt Atlantic salmon (Salmo salar, L.)
title_fullStr Elevated water CO2 can prevent dietary-induced osteomalacia in post-smolt Atlantic salmon (Salmo salar, L.)
title_full_unstemmed Elevated water CO2 can prevent dietary-induced osteomalacia in post-smolt Atlantic salmon (Salmo salar, L.)
title_sort elevated water co2 can prevent dietary-induced osteomalacia in post-smolt atlantic salmon (salmo salar, l.)
publishDate 2023
url https://biblio.ugent.be/publication/01H035F613V87NFT99VTXWZTX4
http://hdl.handle.net/1854/LU-01H035F613V87NFT99VTXWZTX4
https://doi.org/10.3390/biom13040663
https://biblio.ugent.be/publication/01H035F613V87NFT99VTXWZTX4/file/01H035R3W9J1VRKMJC4EF0XZK2
genre Atlantic salmon
Ocean acidification
Salmo salar
genre_facet Atlantic salmon
Ocean acidification
Salmo salar
op_source BIOMOLECULES
ISSN: 2218-273X
op_relation info:eu-repo/grantAgreement/EC/H2020/766347
https://biblio.ugent.be/publication/01H035F613V87NFT99VTXWZTX4
http://hdl.handle.net/1854/LU-01H035F613V87NFT99VTXWZTX4
http://dx.doi.org/10.3390/biom13040663
https://biblio.ugent.be/publication/01H035F613V87NFT99VTXWZTX4/file/01H035R3W9J1VRKMJC4EF0XZK2
op_rights Creative Commons Attribution 4.0 International Public License (CC-BY 4.0)
info:eu-repo/semantics/openAccess
op_doi https://doi.org/10.3390/biom13040663
container_title Biomolecules
container_volume 13
container_issue 4
container_start_page 663
_version_ 1778522359440867328