Inferring bedrock Cenozoic tectonics from ice surface pattern in the Dome C area, East Antarctica

East Antarctica is a Precambrian craton where the thickness of the crust is about 35-40 km. The main geological structures are buried by the extensive continental ice sheet apart from sparse outcrops along the perimeter of the continent. Present understanding of the tectonic evolution of East Antarc...

Full description

Bibliographic Details
Main Authors: CIANFARRA P., SALVINI FRANCESCO
Other Authors: Cianfarra, P., Salvini, Francesco
Format: Other/Unknown Material
Language:English
Italian
Published: 2004
Subjects:
Online Access:http://hdl.handle.net/11567/987286
id ftunivgenova:oai:iris.unige.it:11567/987286
record_format openpolar
spelling ftunivgenova:oai:iris.unige.it:11567/987286 2024-01-28T10:01:23+01:00 Inferring bedrock Cenozoic tectonics from ice surface pattern in the Dome C area, East Antarctica CIANFARRA P. SALVINI FRANCESCO Cianfarra, P. Salvini, Francesco 2004 http://hdl.handle.net/11567/987286 eng ita eng ita http://hdl.handle.net/11567/987286 info:eu-repo/semantics/other 2004 ftunivgenova 2024-01-03T17:59:56Z East Antarctica is a Precambrian craton where the thickness of the crust is about 35-40 km. The main geological structures are buried by the extensive continental ice sheet apart from sparse outcrops along the perimeter of the continent. Present understanding of the tectonic evolution of East Antarctica mainly derives from remotely sensed images and geophysical data. Bedrock physiography in Dome C-Vostok region is characterised by Vostok Lake, Aurora and Vincennes basins. A relief region includes the Vostok Subglacial Highlands, the Gamburtsev Subglacial Mountains and the Belgica Subglacial Highlands. Several model have been proposed to tectonically explain the presence of these depressions: the existence of an Early Paleozoic regional rifting, a Paleozoic compressional tectonic setting or else a glacial erosional origin. It is possible to frame the origin and evolution of Lake Vostok and Dome C structural depressions within a common geodynamic scenario: they form a set of elongated, roughly N-S to NNW-SSE structural depressions related to a NE-SW trending trans-extensional corridor. The relative young age of the Antarctic Ice Cap, about 38 Ma, compared to the old, Mesozoic age of the former, peneplanised landscape constrains the age of these structures in Late Cenozoic time. The presence of this subglacial morphology induces variations in the surface texture of the ice cap either due to the movements of the ice sheet on the roughness of the bedrock morphology, and/or to the interaction with active tectonic processes. A series of preferential orientations may relate also to exogenous processes. The analysis of the resulting textural anisotropy of the ice surface detected on the Radarsat mosaic of Antarctica proved a useful tool to investigate the active tectonic processes of the bedrock An original algorithm developed in SID software allowed to detect the main lineament domains of the surface ice cap in the investigated area. Gaussian analysis eventually made possible to understand the nature of the linear ... Other/Unknown Material Antarc* Antarctic Antarctica East Antarctica Ice cap Ice Sheet Università degli Studi di Genova: CINECA IRIS Antarctic The Antarctic East Antarctica Lake Vostok ENVELOPE(106.000,106.000,-77.500,-77.500) Gamburtsev Subglacial Mountains ENVELOPE(76.000,76.000,-80.500,-80.500) Corridor The ENVELOPE(78.139,78.139,-68.582,-68.582) Corridor, The ENVELOPE(78.139,78.139,-68.582,-68.582) Vostok Lake ENVELOPE(104.750,104.750,-77.392,-77.392) Vostok Subglacial Highlands ENVELOPE(102.000,102.000,-80.000,-80.000) Belgica Subglacial Highlands ENVELOPE(129.000,129.000,-76.500,-76.500)
institution Open Polar
collection Università degli Studi di Genova: CINECA IRIS
op_collection_id ftunivgenova
language English
Italian
description East Antarctica is a Precambrian craton where the thickness of the crust is about 35-40 km. The main geological structures are buried by the extensive continental ice sheet apart from sparse outcrops along the perimeter of the continent. Present understanding of the tectonic evolution of East Antarctica mainly derives from remotely sensed images and geophysical data. Bedrock physiography in Dome C-Vostok region is characterised by Vostok Lake, Aurora and Vincennes basins. A relief region includes the Vostok Subglacial Highlands, the Gamburtsev Subglacial Mountains and the Belgica Subglacial Highlands. Several model have been proposed to tectonically explain the presence of these depressions: the existence of an Early Paleozoic regional rifting, a Paleozoic compressional tectonic setting or else a glacial erosional origin. It is possible to frame the origin and evolution of Lake Vostok and Dome C structural depressions within a common geodynamic scenario: they form a set of elongated, roughly N-S to NNW-SSE structural depressions related to a NE-SW trending trans-extensional corridor. The relative young age of the Antarctic Ice Cap, about 38 Ma, compared to the old, Mesozoic age of the former, peneplanised landscape constrains the age of these structures in Late Cenozoic time. The presence of this subglacial morphology induces variations in the surface texture of the ice cap either due to the movements of the ice sheet on the roughness of the bedrock morphology, and/or to the interaction with active tectonic processes. A series of preferential orientations may relate also to exogenous processes. The analysis of the resulting textural anisotropy of the ice surface detected on the Radarsat mosaic of Antarctica proved a useful tool to investigate the active tectonic processes of the bedrock An original algorithm developed in SID software allowed to detect the main lineament domains of the surface ice cap in the investigated area. Gaussian analysis eventually made possible to understand the nature of the linear ...
author2 Cianfarra, P.
Salvini, Francesco
format Other/Unknown Material
author CIANFARRA P.
SALVINI FRANCESCO
spellingShingle CIANFARRA P.
SALVINI FRANCESCO
Inferring bedrock Cenozoic tectonics from ice surface pattern in the Dome C area, East Antarctica
author_facet CIANFARRA P.
SALVINI FRANCESCO
author_sort CIANFARRA P.
title Inferring bedrock Cenozoic tectonics from ice surface pattern in the Dome C area, East Antarctica
title_short Inferring bedrock Cenozoic tectonics from ice surface pattern in the Dome C area, East Antarctica
title_full Inferring bedrock Cenozoic tectonics from ice surface pattern in the Dome C area, East Antarctica
title_fullStr Inferring bedrock Cenozoic tectonics from ice surface pattern in the Dome C area, East Antarctica
title_full_unstemmed Inferring bedrock Cenozoic tectonics from ice surface pattern in the Dome C area, East Antarctica
title_sort inferring bedrock cenozoic tectonics from ice surface pattern in the dome c area, east antarctica
publishDate 2004
url http://hdl.handle.net/11567/987286
long_lat ENVELOPE(106.000,106.000,-77.500,-77.500)
ENVELOPE(76.000,76.000,-80.500,-80.500)
ENVELOPE(78.139,78.139,-68.582,-68.582)
ENVELOPE(78.139,78.139,-68.582,-68.582)
ENVELOPE(104.750,104.750,-77.392,-77.392)
ENVELOPE(102.000,102.000,-80.000,-80.000)
ENVELOPE(129.000,129.000,-76.500,-76.500)
geographic Antarctic
The Antarctic
East Antarctica
Lake Vostok
Gamburtsev Subglacial Mountains
Corridor The
Corridor, The
Vostok Lake
Vostok Subglacial Highlands
Belgica Subglacial Highlands
geographic_facet Antarctic
The Antarctic
East Antarctica
Lake Vostok
Gamburtsev Subglacial Mountains
Corridor The
Corridor, The
Vostok Lake
Vostok Subglacial Highlands
Belgica Subglacial Highlands
genre Antarc*
Antarctic
Antarctica
East Antarctica
Ice cap
Ice Sheet
genre_facet Antarc*
Antarctic
Antarctica
East Antarctica
Ice cap
Ice Sheet
op_relation http://hdl.handle.net/11567/987286
_version_ 1789326318315241472