DataSheet3_The South Shetland Islands, Antarctica: Lithostratigraphy and geological map.ZIP
Over the last few decades, numerous geological studies have been carried out in the South Shetland Islands, which have greatly contributed to a better understanding of its geological evolution. However, few attempts have been conducted to correlate the geological units throughout this archipelago. W...
Main Authors: | , , , , , , , , , , , , , , , , , |
---|---|
Format: | Dataset |
Language: | unknown |
Published: |
2023
|
Subjects: | |
Online Access: | https://doi.org/10.3389/feart.2022.1002760.s003 |
id |
ftunivfreestate:oai:figshare.com:article/21875844 |
---|---|
record_format |
openpolar |
spelling |
ftunivfreestate:oai:figshare.com:article/21875844 2023-05-15T13:54:41+02:00 DataSheet3_The South Shetland Islands, Antarctica: Lithostratigraphy and geological map.ZIP Joaquín Bastías (14392350) David Chew (2840063) Camila Villanueva (14392353) Teal Riley (567946) Joseline Manfroi (14392356) Cristine Trevisan (14392359) Marcelo Leppe (5564651) Paula Castillo (308673) Fernando Poblete (14392362) Dieter Tetzner (8017481) Gregory Giuliani (37454) Bastián López (14392365) Hong Chen (108084) Guang-Gao Zheng (14392368) Yue Zhao (186573) Liang Gao (368796) Anna Rauch (14392371) Ricardo Jaña (5417579) 2023-01-12T04:25:36Z https://doi.org/10.3389/feart.2022.1002760.s003 unknown https://figshare.com/articles/dataset/DataSheet3_The_South_Shetland_Islands_Antarctica_Lithostratigraphy_and_geological_map_ZIP/21875844 doi:10.3389/feart.2022.1002760.s003 CC BY 4.0 CC-BY Solid Earth Sciences Climate Science Atmospheric Sciences not elsewhere classified Exploration Geochemistry Inorganic Geochemistry Isotope Geochemistry Organic Geochemistry Geochemistry not elsewhere classified Igneous and Metamorphic Petrology Ore Deposit Petrology Palaeontology (incl. Palynology) Structural Geology Tectonics Volcanology Geology not elsewhere classified Seismology and Seismic Exploration Glaciology Hydrogeology Natural Hazards Quaternary Environments Earth Sciences not elsewhere classified Evolutionary Impacts of Climate Change Antarctica climate change antarctic glaciation geology stratigraphy paleobotany Dataset 2023 ftunivfreestate https://doi.org/10.3389/feart.2022.1002760.s003 2023-01-13T00:26:40Z Over the last few decades, numerous geological studies have been carried out in the South Shetland Islands, which have greatly contributed to a better understanding of its geological evolution. However, few attempts have been conducted to correlate the geological units throughout this archipelago. We present herein a review of the literature available in the South Shetland Islands, which we use to propose a lithostratigraphical correlation that constitutes a coherent stratigraphy for the main Mesozoic and Cenozoic rocks of the South Shetland Islands along with a new geological map. The lithostratigraphical correlation shows that the geological and environmental evolution comprises three main stages: 1) deep marine sedimentation from ∼164 to 140 Ma, 2) subaerial volcanism and sedimentation with a proliferation of plants and fauna from ∼140 to 35 Ma and 3) glacial and interglacial deposits from ∼35 Ma. The lithostratigraphical correlation also shows a broad geographical trend of decreasing age of volcanism from southwest to northeast, which has been previously suggested. However, this spatial age trend is disrupted by the presence of Eocene magmatism in Livingston Island, located in the centre of the archipelago. We suggest that the migration of volcanism occurred from the Late Cretaceous until the early Eocene. Subsequently, enhanced magmatic activity took place from the mid-Eocene until the Miocene, which we associate with processes related with the waning of subduction. Constraining the protolith age of the metamorphic complex of Smith Island remains challenging, yet holds key implications for the tectonic and accretionary evolution of the Antarctic Peninsula. The rocks recording the glaciation of this sector of Antarctica are well exposed in the northern South Shetland Islands and hold critical information for understanding the timings and processes that lead to the greenhouse to icehouse transition at the end of the Eocene. Finally, contemporaneous rocks to the breakup of Antarctic Peninsula from Patagonia ... Dataset Antarc* Antarctic Antarctic Peninsula Antarctica Livingston Island Smith Island South Shetland Islands KovsieScholar Repository (University of the Free State - UFS UV) Antarctic Antarctic Peninsula Livingston Island ENVELOPE(-60.500,-60.500,-62.600,-62.600) Patagonia Smith Island ENVELOPE(-62.520,-62.520,-62.981,-62.981) South Shetland Islands The Antarctic |
institution |
Open Polar |
collection |
KovsieScholar Repository (University of the Free State - UFS UV) |
op_collection_id |
ftunivfreestate |
language |
unknown |
topic |
Solid Earth Sciences Climate Science Atmospheric Sciences not elsewhere classified Exploration Geochemistry Inorganic Geochemistry Isotope Geochemistry Organic Geochemistry Geochemistry not elsewhere classified Igneous and Metamorphic Petrology Ore Deposit Petrology Palaeontology (incl. Palynology) Structural Geology Tectonics Volcanology Geology not elsewhere classified Seismology and Seismic Exploration Glaciology Hydrogeology Natural Hazards Quaternary Environments Earth Sciences not elsewhere classified Evolutionary Impacts of Climate Change Antarctica climate change antarctic glaciation geology stratigraphy paleobotany |
spellingShingle |
Solid Earth Sciences Climate Science Atmospheric Sciences not elsewhere classified Exploration Geochemistry Inorganic Geochemistry Isotope Geochemistry Organic Geochemistry Geochemistry not elsewhere classified Igneous and Metamorphic Petrology Ore Deposit Petrology Palaeontology (incl. Palynology) Structural Geology Tectonics Volcanology Geology not elsewhere classified Seismology and Seismic Exploration Glaciology Hydrogeology Natural Hazards Quaternary Environments Earth Sciences not elsewhere classified Evolutionary Impacts of Climate Change Antarctica climate change antarctic glaciation geology stratigraphy paleobotany Joaquín Bastías (14392350) David Chew (2840063) Camila Villanueva (14392353) Teal Riley (567946) Joseline Manfroi (14392356) Cristine Trevisan (14392359) Marcelo Leppe (5564651) Paula Castillo (308673) Fernando Poblete (14392362) Dieter Tetzner (8017481) Gregory Giuliani (37454) Bastián López (14392365) Hong Chen (108084) Guang-Gao Zheng (14392368) Yue Zhao (186573) Liang Gao (368796) Anna Rauch (14392371) Ricardo Jaña (5417579) DataSheet3_The South Shetland Islands, Antarctica: Lithostratigraphy and geological map.ZIP |
topic_facet |
Solid Earth Sciences Climate Science Atmospheric Sciences not elsewhere classified Exploration Geochemistry Inorganic Geochemistry Isotope Geochemistry Organic Geochemistry Geochemistry not elsewhere classified Igneous and Metamorphic Petrology Ore Deposit Petrology Palaeontology (incl. Palynology) Structural Geology Tectonics Volcanology Geology not elsewhere classified Seismology and Seismic Exploration Glaciology Hydrogeology Natural Hazards Quaternary Environments Earth Sciences not elsewhere classified Evolutionary Impacts of Climate Change Antarctica climate change antarctic glaciation geology stratigraphy paleobotany |
description |
Over the last few decades, numerous geological studies have been carried out in the South Shetland Islands, which have greatly contributed to a better understanding of its geological evolution. However, few attempts have been conducted to correlate the geological units throughout this archipelago. We present herein a review of the literature available in the South Shetland Islands, which we use to propose a lithostratigraphical correlation that constitutes a coherent stratigraphy for the main Mesozoic and Cenozoic rocks of the South Shetland Islands along with a new geological map. The lithostratigraphical correlation shows that the geological and environmental evolution comprises three main stages: 1) deep marine sedimentation from ∼164 to 140 Ma, 2) subaerial volcanism and sedimentation with a proliferation of plants and fauna from ∼140 to 35 Ma and 3) glacial and interglacial deposits from ∼35 Ma. The lithostratigraphical correlation also shows a broad geographical trend of decreasing age of volcanism from southwest to northeast, which has been previously suggested. However, this spatial age trend is disrupted by the presence of Eocene magmatism in Livingston Island, located in the centre of the archipelago. We suggest that the migration of volcanism occurred from the Late Cretaceous until the early Eocene. Subsequently, enhanced magmatic activity took place from the mid-Eocene until the Miocene, which we associate with processes related with the waning of subduction. Constraining the protolith age of the metamorphic complex of Smith Island remains challenging, yet holds key implications for the tectonic and accretionary evolution of the Antarctic Peninsula. The rocks recording the glaciation of this sector of Antarctica are well exposed in the northern South Shetland Islands and hold critical information for understanding the timings and processes that lead to the greenhouse to icehouse transition at the end of the Eocene. Finally, contemporaneous rocks to the breakup of Antarctic Peninsula from Patagonia ... |
format |
Dataset |
author |
Joaquín Bastías (14392350) David Chew (2840063) Camila Villanueva (14392353) Teal Riley (567946) Joseline Manfroi (14392356) Cristine Trevisan (14392359) Marcelo Leppe (5564651) Paula Castillo (308673) Fernando Poblete (14392362) Dieter Tetzner (8017481) Gregory Giuliani (37454) Bastián López (14392365) Hong Chen (108084) Guang-Gao Zheng (14392368) Yue Zhao (186573) Liang Gao (368796) Anna Rauch (14392371) Ricardo Jaña (5417579) |
author_facet |
Joaquín Bastías (14392350) David Chew (2840063) Camila Villanueva (14392353) Teal Riley (567946) Joseline Manfroi (14392356) Cristine Trevisan (14392359) Marcelo Leppe (5564651) Paula Castillo (308673) Fernando Poblete (14392362) Dieter Tetzner (8017481) Gregory Giuliani (37454) Bastián López (14392365) Hong Chen (108084) Guang-Gao Zheng (14392368) Yue Zhao (186573) Liang Gao (368796) Anna Rauch (14392371) Ricardo Jaña (5417579) |
author_sort |
Joaquín Bastías (14392350) |
title |
DataSheet3_The South Shetland Islands, Antarctica: Lithostratigraphy and geological map.ZIP |
title_short |
DataSheet3_The South Shetland Islands, Antarctica: Lithostratigraphy and geological map.ZIP |
title_full |
DataSheet3_The South Shetland Islands, Antarctica: Lithostratigraphy and geological map.ZIP |
title_fullStr |
DataSheet3_The South Shetland Islands, Antarctica: Lithostratigraphy and geological map.ZIP |
title_full_unstemmed |
DataSheet3_The South Shetland Islands, Antarctica: Lithostratigraphy and geological map.ZIP |
title_sort |
datasheet3_the south shetland islands, antarctica: lithostratigraphy and geological map.zip |
publishDate |
2023 |
url |
https://doi.org/10.3389/feart.2022.1002760.s003 |
long_lat |
ENVELOPE(-60.500,-60.500,-62.600,-62.600) ENVELOPE(-62.520,-62.520,-62.981,-62.981) |
geographic |
Antarctic Antarctic Peninsula Livingston Island Patagonia Smith Island South Shetland Islands The Antarctic |
geographic_facet |
Antarctic Antarctic Peninsula Livingston Island Patagonia Smith Island South Shetland Islands The Antarctic |
genre |
Antarc* Antarctic Antarctic Peninsula Antarctica Livingston Island Smith Island South Shetland Islands |
genre_facet |
Antarc* Antarctic Antarctic Peninsula Antarctica Livingston Island Smith Island South Shetland Islands |
op_relation |
https://figshare.com/articles/dataset/DataSheet3_The_South_Shetland_Islands_Antarctica_Lithostratigraphy_and_geological_map_ZIP/21875844 doi:10.3389/feart.2022.1002760.s003 |
op_rights |
CC BY 4.0 |
op_rightsnorm |
CC-BY |
op_doi |
https://doi.org/10.3389/feart.2022.1002760.s003 |
_version_ |
1766260759906484224 |