Permian–Triassic mass extinction pulses driven by major marine carbon cycle perturbations

The Permian/Triassic boundary approximately 251.9 million years ago marked the most severe environmental crisis identified in the geological record, which dictated the onwards course for the evolution of life. Magmatism from Siberian Traps is thought to have played an important role, but the causati...

Full description

Bibliographic Details
Published in:Nature Geoscience
Main Authors: Jurikova H., Gutjahr M., Wallmann K., Flöge S., Liebetrau V., Posenato R., Angiolini L., Garbelli C., Brand U., Wiedenbeck M., Eisenhauer A.
Other Authors: Jurikova, H., Gutjahr, M., Wallmann, K., Flöge, S., Liebetrau, V., Posenato, R., Angiolini, L., Garbelli, C., Brand, U., Wiedenbeck, M., Eisenhauer, A.
Format: Article in Journal/Newspaper
Language:English
Published: 2020
Subjects:
Online Access:http://hdl.handle.net/11392/2425598
https://doi.org/10.1038/s41561-020-00646-4
https://www.nature.com/articles/s41561-020-00646-4
_version_ 1821674809075957760
author Jurikova H.
Gutjahr M.
Wallmann K.
Flöge S.
Liebetrau V.
Posenato R.
Angiolini L.
Garbelli C.
Brand U.
Wiedenbeck M.
Eisenhauer A.
author2 Jurikova, H.
Gutjahr, M.
Wallmann, K.
Flöge, S.
Liebetrau, V.
Posenato, R.
Angiolini, L.
Garbelli, C.
Brand, U.
Wiedenbeck, M.
Eisenhauer, A.
author_facet Jurikova H.
Gutjahr M.
Wallmann K.
Flöge S.
Liebetrau V.
Posenato R.
Angiolini L.
Garbelli C.
Brand U.
Wiedenbeck M.
Eisenhauer A.
author_sort Jurikova H.
collection Università degli Studi di Ferrara: CINECA IRIS
container_issue 11
container_start_page 745
container_title Nature Geoscience
container_volume 13
description The Permian/Triassic boundary approximately 251.9 million years ago marked the most severe environmental crisis identified in the geological record, which dictated the onwards course for the evolution of life. Magmatism from Siberian Traps is thought to have played an important role, but the causational trigger and its feedbacks are yet to be fully understood. Here we present a new boron-isotope-derived seawater pH record from fossil brachiopod shells deposited on the Tethys shelf that demonstrates a substantial decline in seawater pH coeval with the onset of the mass extinction in the latest Permian. Combined with carbon isotope data, our results are integrated in a geochemical model that resolves the carbon cycle dynamics as well as the ocean redox conditions and nitrogen isotope turnover. We find that the initial ocean acidification was intimately linked to a large pulse of carbon degassing from the Siberian sill intrusions. We unravel the consequences of the greenhouse effect on the marine environment, and show how elevated sea surface temperatures, export production and nutrient input driven by increased rates of chemical weathering gave rise to widespread deoxygenation and sporadic sulfide poisoning of the oceans in the earliest Triassic. Our findings enable us to assemble a consistent biogeochemical reconstruction of the mechanisms that resulted in the largest Phanerozoic mass extinction
format Article in Journal/Newspaper
genre Ocean acidification
genre_facet Ocean acidification
id ftunivferrarair:oai:iris.unife.it:11392/2425598
institution Open Polar
language English
op_collection_id ftunivferrarair
op_container_end_page 750
op_doi https://doi.org/10.1038/s41561-020-00646-4
op_relation info:eu-repo/semantics/altIdentifier/wos/WOS:000579724700001
volume:13
issue:11
firstpage:745
lastpage:750
numberofpages:6
journal:NATURE GEOSCIENCE
http://hdl.handle.net/11392/2425598
doi:10.1038/s41561-020-00646-4
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85092742379
https://www.nature.com/articles/s41561-020-00646-4
op_rights info:eu-repo/semantics/openAccess
publishDate 2020
record_format openpolar
spelling ftunivferrarair:oai:iris.unife.it:11392/2425598 2025-01-17T00:06:23+00:00 Permian–Triassic mass extinction pulses driven by major marine carbon cycle perturbations Jurikova H. Gutjahr M. Wallmann K. Flöge S. Liebetrau V. Posenato R. Angiolini L. Garbelli C. Brand U. Wiedenbeck M. Eisenhauer A. Jurikova, H. Gutjahr, M. Wallmann, K. Flöge, S. Liebetrau, V. Posenato, R. Angiolini, L. Garbelli, C. Brand, U. Wiedenbeck, M. Eisenhauer, A. 2020 STAMPA http://hdl.handle.net/11392/2425598 https://doi.org/10.1038/s41561-020-00646-4 https://www.nature.com/articles/s41561-020-00646-4 eng eng info:eu-repo/semantics/altIdentifier/wos/WOS:000579724700001 volume:13 issue:11 firstpage:745 lastpage:750 numberofpages:6 journal:NATURE GEOSCIENCE http://hdl.handle.net/11392/2425598 doi:10.1038/s41561-020-00646-4 info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85092742379 https://www.nature.com/articles/s41561-020-00646-4 info:eu-repo/semantics/openAccess Permian-Triassic mass extinction Acidification Isotope stratigraphy Geochemistry Dolomites info:eu-repo/semantics/article 2020 ftunivferrarair https://doi.org/10.1038/s41561-020-00646-4 2024-01-24T17:42:28Z The Permian/Triassic boundary approximately 251.9 million years ago marked the most severe environmental crisis identified in the geological record, which dictated the onwards course for the evolution of life. Magmatism from Siberian Traps is thought to have played an important role, but the causational trigger and its feedbacks are yet to be fully understood. Here we present a new boron-isotope-derived seawater pH record from fossil brachiopod shells deposited on the Tethys shelf that demonstrates a substantial decline in seawater pH coeval with the onset of the mass extinction in the latest Permian. Combined with carbon isotope data, our results are integrated in a geochemical model that resolves the carbon cycle dynamics as well as the ocean redox conditions and nitrogen isotope turnover. We find that the initial ocean acidification was intimately linked to a large pulse of carbon degassing from the Siberian sill intrusions. We unravel the consequences of the greenhouse effect on the marine environment, and show how elevated sea surface temperatures, export production and nutrient input driven by increased rates of chemical weathering gave rise to widespread deoxygenation and sporadic sulfide poisoning of the oceans in the earliest Triassic. Our findings enable us to assemble a consistent biogeochemical reconstruction of the mechanisms that resulted in the largest Phanerozoic mass extinction Article in Journal/Newspaper Ocean acidification Università degli Studi di Ferrara: CINECA IRIS Nature Geoscience 13 11 745 750
spellingShingle Permian-Triassic mass extinction
Acidification
Isotope stratigraphy
Geochemistry
Dolomites
Jurikova H.
Gutjahr M.
Wallmann K.
Flöge S.
Liebetrau V.
Posenato R.
Angiolini L.
Garbelli C.
Brand U.
Wiedenbeck M.
Eisenhauer A.
Permian–Triassic mass extinction pulses driven by major marine carbon cycle perturbations
title Permian–Triassic mass extinction pulses driven by major marine carbon cycle perturbations
title_full Permian–Triassic mass extinction pulses driven by major marine carbon cycle perturbations
title_fullStr Permian–Triassic mass extinction pulses driven by major marine carbon cycle perturbations
title_full_unstemmed Permian–Triassic mass extinction pulses driven by major marine carbon cycle perturbations
title_short Permian–Triassic mass extinction pulses driven by major marine carbon cycle perturbations
title_sort permian–triassic mass extinction pulses driven by major marine carbon cycle perturbations
topic Permian-Triassic mass extinction
Acidification
Isotope stratigraphy
Geochemistry
Dolomites
topic_facet Permian-Triassic mass extinction
Acidification
Isotope stratigraphy
Geochemistry
Dolomites
url http://hdl.handle.net/11392/2425598
https://doi.org/10.1038/s41561-020-00646-4
https://www.nature.com/articles/s41561-020-00646-4