Ocean acidification and the Permo-Triassic mass extinction

This is the author accepted manuscript. The final version is available from the publisher via the DOI in this record. Ocean acidification triggered by Siberian Trap volcanism was a possible kill mechanism for the Permo-Triassic Boundary mass extinction, but direct evidence for an acidification event...

Full description

Bibliographic Details
Published in:Science
Main Authors: Clarkson, MO, Kasemann, SA, Wood, RA, Lenton, TM, Daines, SJ, Richoz, S, Ohnemueller, F, Meixner, A, Poulton, SW, Tipper, ET
Format: Article in Journal/Newspaper
Language:English
Published: American Association for the Advancement of Science 2015
Subjects:
Online Access:http://hdl.handle.net/10871/20741
https://doi.org/10.1126/science.aaa0193
id ftunivexeter:oai:ore.exeter.ac.uk:10871/20741
record_format openpolar
spelling ftunivexeter:oai:ore.exeter.ac.uk:10871/20741 2024-09-15T18:28:04+00:00 Ocean acidification and the Permo-Triassic mass extinction Clarkson, MO Kasemann, SA Wood, RA Lenton, TM Daines, SJ Richoz, S Ohnemueller, F Meixner, A Poulton, SW Tipper, ET 2015 http://hdl.handle.net/10871/20741 https://doi.org/10.1126/science.aaa0193 en eng American Association for the Advancement of Science http://www.ncbi.nlm.nih.gov/pubmed/25859043 Vol. 348, pp. 229 - 232 doi:10.1126/science.aaa0193 348/6231/229 http://hdl.handle.net/10871/20741 0036-8075 Science 25859043 Animals Aquatic Organisms Atmosphere Boron Carbon Carbon Cycle Carbon Isotopes Ecosystem Extinction Biological Hydrogen-Ion Concentration Isotopes Oceans and Seas Seawater Time Article 2015 ftunivexeter https://doi.org/10.1126/science.aaa0193 2024-07-29T03:24:15Z This is the author accepted manuscript. The final version is available from the publisher via the DOI in this record. Ocean acidification triggered by Siberian Trap volcanism was a possible kill mechanism for the Permo-Triassic Boundary mass extinction, but direct evidence for an acidification event is lacking. We present a high-resolution seawater pH record across this interval, using boron isotope data combined with a quantitative modeling approach. In the latest Permian, increased ocean alkalinity primed the Earth system with a low level of atmospheric CO2 and a high ocean buffering capacity. The first phase of extinction was coincident with a slow injection of carbon into the atmosphere, and ocean pH remained stable. During the second extinction pulse, however, a rapid and large injection of carbon caused an abrupt acidification event that drove the preferential loss of heavily calcified marine biota. M.O.C. acknowledges funding from the Edinburgh University Principal’s Career Development Scholarship, the International Centre for Carbonate Reservoirs, and The Marsden Fund (U001314). R.A.W., T.M.L., and S.W.P. acknowledge support from the Natural Environment Research Council through the “Co-evolution of Life and the Planet” scheme (NE/I005978). T.M.L. and S.J.D. were supported by the Leverhulme Trust (RPG-2013-106). S.A.K. and A.M. acknowledge support from the German Research Foundation (Deutsche Forschungsgemeinschaft) Major Research Instrumentation Program INST 144/307-1. This is a contribution to IGCP 572, with S.R. sponsored for fieldwork by the Austrian National Committee (Austrian Academy of Sciences) for the International Geoscience Programme (IGCP). We are grateful to R. Newton and A. Thomas for helpful discussions, L. Krystyn for field assistance, F. Maurer for discussions on stratigraphy and providing photomicrographs, and B. Mills for assisting with model studies. Data are available online in the supplementary materials and at www.pangaea.de. Article in Journal/Newspaper Ocean acidification University of Exeter: Open Research Exeter (ORE) Science 348 6231 229 232
institution Open Polar
collection University of Exeter: Open Research Exeter (ORE)
op_collection_id ftunivexeter
language English
topic Animals
Aquatic Organisms
Atmosphere
Boron
Carbon
Carbon Cycle
Carbon Isotopes
Ecosystem
Extinction
Biological
Hydrogen-Ion Concentration
Isotopes
Oceans and Seas
Seawater
Time
spellingShingle Animals
Aquatic Organisms
Atmosphere
Boron
Carbon
Carbon Cycle
Carbon Isotopes
Ecosystem
Extinction
Biological
Hydrogen-Ion Concentration
Isotopes
Oceans and Seas
Seawater
Time
Clarkson, MO
Kasemann, SA
Wood, RA
Lenton, TM
Daines, SJ
Richoz, S
Ohnemueller, F
Meixner, A
Poulton, SW
Tipper, ET
Ocean acidification and the Permo-Triassic mass extinction
topic_facet Animals
Aquatic Organisms
Atmosphere
Boron
Carbon
Carbon Cycle
Carbon Isotopes
Ecosystem
Extinction
Biological
Hydrogen-Ion Concentration
Isotopes
Oceans and Seas
Seawater
Time
description This is the author accepted manuscript. The final version is available from the publisher via the DOI in this record. Ocean acidification triggered by Siberian Trap volcanism was a possible kill mechanism for the Permo-Triassic Boundary mass extinction, but direct evidence for an acidification event is lacking. We present a high-resolution seawater pH record across this interval, using boron isotope data combined with a quantitative modeling approach. In the latest Permian, increased ocean alkalinity primed the Earth system with a low level of atmospheric CO2 and a high ocean buffering capacity. The first phase of extinction was coincident with a slow injection of carbon into the atmosphere, and ocean pH remained stable. During the second extinction pulse, however, a rapid and large injection of carbon caused an abrupt acidification event that drove the preferential loss of heavily calcified marine biota. M.O.C. acknowledges funding from the Edinburgh University Principal’s Career Development Scholarship, the International Centre for Carbonate Reservoirs, and The Marsden Fund (U001314). R.A.W., T.M.L., and S.W.P. acknowledge support from the Natural Environment Research Council through the “Co-evolution of Life and the Planet” scheme (NE/I005978). T.M.L. and S.J.D. were supported by the Leverhulme Trust (RPG-2013-106). S.A.K. and A.M. acknowledge support from the German Research Foundation (Deutsche Forschungsgemeinschaft) Major Research Instrumentation Program INST 144/307-1. This is a contribution to IGCP 572, with S.R. sponsored for fieldwork by the Austrian National Committee (Austrian Academy of Sciences) for the International Geoscience Programme (IGCP). We are grateful to R. Newton and A. Thomas for helpful discussions, L. Krystyn for field assistance, F. Maurer for discussions on stratigraphy and providing photomicrographs, and B. Mills for assisting with model studies. Data are available online in the supplementary materials and at www.pangaea.de.
format Article in Journal/Newspaper
author Clarkson, MO
Kasemann, SA
Wood, RA
Lenton, TM
Daines, SJ
Richoz, S
Ohnemueller, F
Meixner, A
Poulton, SW
Tipper, ET
author_facet Clarkson, MO
Kasemann, SA
Wood, RA
Lenton, TM
Daines, SJ
Richoz, S
Ohnemueller, F
Meixner, A
Poulton, SW
Tipper, ET
author_sort Clarkson, MO
title Ocean acidification and the Permo-Triassic mass extinction
title_short Ocean acidification and the Permo-Triassic mass extinction
title_full Ocean acidification and the Permo-Triassic mass extinction
title_fullStr Ocean acidification and the Permo-Triassic mass extinction
title_full_unstemmed Ocean acidification and the Permo-Triassic mass extinction
title_sort ocean acidification and the permo-triassic mass extinction
publisher American Association for the Advancement of Science
publishDate 2015
url http://hdl.handle.net/10871/20741
https://doi.org/10.1126/science.aaa0193
genre Ocean acidification
genre_facet Ocean acidification
op_relation http://www.ncbi.nlm.nih.gov/pubmed/25859043
Vol. 348, pp. 229 - 232
doi:10.1126/science.aaa0193
348/6231/229
http://hdl.handle.net/10871/20741
0036-8075
Science
25859043
op_doi https://doi.org/10.1126/science.aaa0193
container_title Science
container_volume 348
container_issue 6231
container_start_page 229
op_container_end_page 232
_version_ 1810469374605131776