New methods for evaluating sea ice in climate models based on energy budgets

Arctic sea ice plays a vital role in the Earth’s climate system, through its reflection of solar energy and insulation of ocean heat, and has changed rapidly in the past 20 years. Model simulations of Arctic sea ice display a wide spread both in the present-day and in the future. Due to lack of obse...

Full description

Bibliographic Details
Main Author: West, A
Other Authors: Collins, Mat, Blockley, Ed, Beare, Robert
Format: Doctoral or Postdoctoral Thesis
Language:unknown
Published: University of Exeter 2021
Subjects:
Sea
Ice
Online Access:http://hdl.handle.net/10871/127762
id ftunivexeter:oai:ore.exeter.ac.uk:10871/127762
record_format openpolar
spelling ftunivexeter:oai:ore.exeter.ac.uk:10871/127762 2024-09-15T17:35:53+00:00 New methods for evaluating sea ice in climate models based on energy budgets West, A Collins, Mat Blockley, Ed Beare, Robert 2021 http://hdl.handle.net/10871/127762 unknown University of Exeter College of Engineering, Mathematics and Physical Sciences http://hdl.handle.net/10871/127762 http://www.rioxx.net/licenses/all-rights-reserved Sea Ice Arctic climate model evaluation energy surface buoy Thesis or dissertation PhD in Mathematics Doctoral Doctoral Thesis 2021 ftunivexeter 2024-07-29T03:24:14Z Arctic sea ice plays a vital role in the Earth’s climate system, through its reflection of solar energy and insulation of ocean heat, and has changed rapidly in the past 20 years. Model simulations of Arctic sea ice display a wide spread both in the present-day and in the future. Due to lack of observations however, evaluation of sea ice simulation has historically been limited in scope mainly to ice extent and (sometimes) volume, with little attempt to evaluate at large scale simulation of the fundamental thermodynamic processes governing sea ice growth and melt. In this thesis two new, contrasting methods are presented for evaluating Arctic climate simulation that address this: firstly, the induced surface flux (ISF) framework attributes model biases (differences) to specific proximate drivers using existing reference datasets. Secondly, the Arctic ice mass balance buoy (IMB) network is used to build a dataset with which to evaluate many sea ice thermodynamic processes directly. We use three UK CMIP models for analysis: HadGEM2-ES, HadGEM3-GC3.1 and UKESM1.0. These models display very different Arctic sea ice simulations, with ice in HadGEM2-ES thinnest and ice in UKESM1.0 thickest. Using the ISF framework and IMB evaluation, it is shown that modelled sea ice volume is tightly coupled to modelled ice growth and melt, and that most of the model biases and differences are caused by differences in albedo and atmospheric forcing arising in the late spring and early summer. Despite this, a downwelling longwave radiation bias present in all models during winter ‘predisposes’ them towards a thicker ice cover. The methods can also be used to evaluate the proximate impact of specific model improvements in the latter two models on sea ice growth and melt, which is seen to be small but non-negligible. The results also show that more accurate observations of Arctic radiative fluxes, and of snow area and thickness, would be particularly useful in improving model evaluation, and that ice mass balance buoy measurements would ... Doctoral or Postdoctoral Thesis albedo Sea ice University of Exeter: Open Research Exeter (ORE)
institution Open Polar
collection University of Exeter: Open Research Exeter (ORE)
op_collection_id ftunivexeter
language unknown
topic Sea
Ice
Arctic
climate
model
evaluation
energy
surface
buoy
spellingShingle Sea
Ice
Arctic
climate
model
evaluation
energy
surface
buoy
West, A
New methods for evaluating sea ice in climate models based on energy budgets
topic_facet Sea
Ice
Arctic
climate
model
evaluation
energy
surface
buoy
description Arctic sea ice plays a vital role in the Earth’s climate system, through its reflection of solar energy and insulation of ocean heat, and has changed rapidly in the past 20 years. Model simulations of Arctic sea ice display a wide spread both in the present-day and in the future. Due to lack of observations however, evaluation of sea ice simulation has historically been limited in scope mainly to ice extent and (sometimes) volume, with little attempt to evaluate at large scale simulation of the fundamental thermodynamic processes governing sea ice growth and melt. In this thesis two new, contrasting methods are presented for evaluating Arctic climate simulation that address this: firstly, the induced surface flux (ISF) framework attributes model biases (differences) to specific proximate drivers using existing reference datasets. Secondly, the Arctic ice mass balance buoy (IMB) network is used to build a dataset with which to evaluate many sea ice thermodynamic processes directly. We use three UK CMIP models for analysis: HadGEM2-ES, HadGEM3-GC3.1 and UKESM1.0. These models display very different Arctic sea ice simulations, with ice in HadGEM2-ES thinnest and ice in UKESM1.0 thickest. Using the ISF framework and IMB evaluation, it is shown that modelled sea ice volume is tightly coupled to modelled ice growth and melt, and that most of the model biases and differences are caused by differences in albedo and atmospheric forcing arising in the late spring and early summer. Despite this, a downwelling longwave radiation bias present in all models during winter ‘predisposes’ them towards a thicker ice cover. The methods can also be used to evaluate the proximate impact of specific model improvements in the latter two models on sea ice growth and melt, which is seen to be small but non-negligible. The results also show that more accurate observations of Arctic radiative fluxes, and of snow area and thickness, would be particularly useful in improving model evaluation, and that ice mass balance buoy measurements would ...
author2 Collins, Mat
Blockley, Ed
Beare, Robert
format Doctoral or Postdoctoral Thesis
author West, A
author_facet West, A
author_sort West, A
title New methods for evaluating sea ice in climate models based on energy budgets
title_short New methods for evaluating sea ice in climate models based on energy budgets
title_full New methods for evaluating sea ice in climate models based on energy budgets
title_fullStr New methods for evaluating sea ice in climate models based on energy budgets
title_full_unstemmed New methods for evaluating sea ice in climate models based on energy budgets
title_sort new methods for evaluating sea ice in climate models based on energy budgets
publisher University of Exeter
publishDate 2021
url http://hdl.handle.net/10871/127762
genre albedo
Sea ice
genre_facet albedo
Sea ice
op_relation http://hdl.handle.net/10871/127762
op_rights http://www.rioxx.net/licenses/all-rights-reserved
_version_ 1810484164423581696