Arctic tropospheric ozone: assessment of current knowledge and model performance

International audience As the third most important greenhouse gas (GHG) after CO2 and methane, tropospheric ozone (O3) is also an air pollutant causing damage to human health and ecosystems. This study brings together recent research on observations and modeling of tropospheric O3 in the Arctic, a r...

Full description

Bibliographic Details
Published in:Atmospheric Chemistry and Physics
Main Authors: Whaley, Cynthia, H., Law, Kathy S., Hjorth, Jens Liengaard, Skov, Henrik, Arnold, Stephen, R., Langner, Joakim, Pernov, Jakob Boyd, Bergeron, Garance, Bourgeois, Ilann, Christensen, Jesper, H., Chien, Rong-You, Deushi, Makoto, Dong, Xinyi, Effertz, Peter, Faluvegi, Gregory, Flanner, Mark, Fu, Joshua, S., Gauss, Michael, Huey, L., Gregory, Im, Ulas, Kivi, Rigel, Marelle, Louis, Onishi, Tatsuo, Oshima, Naga, Petropavlovskikh, Irina, Peischl, Jeff, Plummer, David, A., Pozzoli, Luca, Raut, Jean-Christophe, Ryerson, Tom, Skeie, Ragnhild, Solberg, Sverre, Thomas, Manu, A., Thompson, Chelsea, Tsigaridis, Kostas, Tsyro, Svetlana, Turnock, Steven, T., von Salzen, Knut, Tarasick, David, W.
Other Authors: Environment and Climate Change Canada (ECCC), TROPO - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), iCLIMATE Aarhus University Interdisciplinary Centre for Climate Change, Aarhus University Aarhus, Institute for Climate and Atmospheric Science Leeds (ICAS), School of Earth and Environment Leeds (SEE), University of Leeds-University of Leeds, Swedish Meteorological and Hydrological Institute (SMHI), Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado Boulder -National Oceanic and Atmospheric Administration (NOAA), NOAA Chemical Sciences Laboratory (CSL), National Oceanic and Atmospheric Administration (NOAA), Extreme Environments Research Laboratory (EERL), Ecole Polytechnique Fédérale de Lausanne (EPFL), Plant Ecology Research Laboratory, The University of Tennessee Knoxville, Meteorological Research Institute Tsukuba (MRI), Japan Meteorological Agency (JMA), NASA Goddard Institute for Space Studies (GISS), NASA Goddard Space Flight Center (GSFC), Center for Climate Systems Research New York (CCSR), Columbia University New York, Department of Climate and Space Sciences and Engineering (CLaSP), University of Michigan Ann Arbor, University of Michigan System-University of Michigan System, Norwegian Meteorological Institute Oslo (MET), School of Earth and Atmospheric Sciences Atlanta, Georgia Institute of Technology Atlanta, Finnish Meteorological Institute (FMI), ESRL Global Monitoring Laboratory Boulder (GML), NOAA Earth System Research Laboratory (ESRL), National Oceanic and Atmospheric Administration (NOAA)-National Oceanic and Atmospheric Administration (NOAA), European Commission - Joint Research Centre Ispra (JRC), FINCONS SPA, Scientific Aviation, Inc., Center for International Climate and Environmental Research Oslo (CICERO), University of Oslo (UiO), Norwegian Institute for Air Research (NILU), Met Office Hadley Centre (MOHC), United Kingdom Met Office Exeter
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2023
Subjects:
Online Access:https://insu.hal.science/insu-03682231
https://insu.hal.science/insu-03682231v2/document
https://insu.hal.science/insu-03682231v2/file/acp-23-637-2023.pdf
https://doi.org/10.5194/acp-23-637-2023
id ftuniversailles:oai:HAL:insu-03682231v2
record_format openpolar
institution Open Polar
collection Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQ
op_collection_id ftuniversailles
language English
topic [PHYS.PHYS.PHYS-AO-PH]Physics [physics]/Physics [physics]/Atmospheric and Oceanic Physics [physics.ao-ph]
[SDU.OCEAN]Sciences of the Universe [physics]/Ocean
Atmosphere
spellingShingle [PHYS.PHYS.PHYS-AO-PH]Physics [physics]/Physics [physics]/Atmospheric and Oceanic Physics [physics.ao-ph]
[SDU.OCEAN]Sciences of the Universe [physics]/Ocean
Atmosphere
Whaley, Cynthia, H.
Law, Kathy S.
Hjorth, Jens Liengaard
Skov, Henrik
Arnold, Stephen, R.
Langner, Joakim
Pernov, Jakob Boyd
Bergeron, Garance
Bourgeois, Ilann
Christensen, Jesper, H.
Chien, Rong-You
Deushi, Makoto
Dong, Xinyi
Effertz, Peter
Faluvegi, Gregory
Flanner, Mark
Fu, Joshua, S.
Gauss, Michael
Huey, L., Gregory
Im, Ulas
Kivi, Rigel
Marelle, Louis
Onishi, Tatsuo
Oshima, Naga
Petropavlovskikh, Irina
Peischl, Jeff
Plummer, David, A.
Pozzoli, Luca
Raut, Jean-Christophe
Ryerson, Tom
Skeie, Ragnhild
Solberg, Sverre
Thomas, Manu, A.
Thompson, Chelsea
Tsigaridis, Kostas
Tsyro, Svetlana
Turnock, Steven, T.
von Salzen, Knut
Tarasick, David, W.
Arctic tropospheric ozone: assessment of current knowledge and model performance
topic_facet [PHYS.PHYS.PHYS-AO-PH]Physics [physics]/Physics [physics]/Atmospheric and Oceanic Physics [physics.ao-ph]
[SDU.OCEAN]Sciences of the Universe [physics]/Ocean
Atmosphere
description International audience As the third most important greenhouse gas (GHG) after CO2 and methane, tropospheric ozone (O3) is also an air pollutant causing damage to human health and ecosystems. This study brings together recent research on observations and modeling of tropospheric O3 in the Arctic, a rapidly warming and sensitive environment. At different locations in the Arctic, the observed surface O3 seasonal cycles are quite different. Coastal Arctic locations, for example, have a minimum in the springtime due to O3 depletion events resulting from surface bromine chemistry. In contrast, other Arctic locations have a maximum in the spring. The 12 state-of-the-art models used in this study lack the surface halogen chemistry needed to simulate coastal Arctic surface O3 depletion in the springtime, however, the multi-model median (MMM) has accurate seasonal cycles at non-coastal Arctic locations. There is a large amount of variability among models, which has been reported previously, and we show that there continues to be no convergence among models, nor improved accuracy in simulating tropospheric O3 and its precursor species. The MMM underestimates Arctic surface O3 by 5% to 15% depending on the location. The vertical distribution of tropospheric O3 is studied from recent ozonesonde measurements and the models. The models are highly variable, simulating free-tropospheric O3 within a range of +/-50% depending on the model and the altitude. The MMM performs best, within +/-8% at most locations and seasons. However, nearly all models overestimate O3 near the tropopause (~300 hPa or ~8 km), likely due to ongoing issues with underestimating the altitude of the tropopause and excessive downward transport of stratospheric O3 at high latitudes. For example, the MMM is biased high by about 20% at Eureka. Observed and simulated O3 precursors (CO, NOx and reservoir PAN) are evaluated throughout the troposphere. Models underestimate wintertime CO everywhere, likely due to a combination of underestimating CO emissions and ...
author2 Environment and Climate Change Canada (ECCC)
TROPO - LATMOS
Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS)
Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
iCLIMATE Aarhus University Interdisciplinary Centre for Climate Change
Aarhus University Aarhus
Institute for Climate and Atmospheric Science Leeds (ICAS)
School of Earth and Environment Leeds (SEE)
University of Leeds-University of Leeds
Swedish Meteorological and Hydrological Institute (SMHI)
Cooperative Institute for Research in Environmental Sciences (CIRES)
University of Colorado Boulder -National Oceanic and Atmospheric Administration (NOAA)
NOAA Chemical Sciences Laboratory (CSL)
National Oceanic and Atmospheric Administration (NOAA)
Extreme Environments Research Laboratory (EERL)
Ecole Polytechnique Fédérale de Lausanne (EPFL)
Plant Ecology Research Laboratory
The University of Tennessee Knoxville
Meteorological Research Institute Tsukuba (MRI)
Japan Meteorological Agency (JMA)
NASA Goddard Institute for Space Studies (GISS)
NASA Goddard Space Flight Center (GSFC)
Center for Climate Systems Research New York (CCSR)
Columbia University New York
Department of Climate and Space Sciences and Engineering (CLaSP)
University of Michigan Ann Arbor
University of Michigan System-University of Michigan System
Norwegian Meteorological Institute Oslo (MET)
School of Earth and Atmospheric Sciences Atlanta
Georgia Institute of Technology Atlanta
Finnish Meteorological Institute (FMI)
ESRL Global Monitoring Laboratory Boulder (GML)
NOAA Earth System Research Laboratory (ESRL)
National Oceanic and Atmospheric Administration (NOAA)-National Oceanic and Atmospheric Administration (NOAA)
European Commission - Joint Research Centre Ispra (JRC)
FINCONS SPA
Scientific Aviation, Inc.
Center for International Climate and Environmental Research Oslo (CICERO)
University of Oslo (UiO)
Norwegian Institute for Air Research (NILU)
Met Office Hadley Centre (MOHC)
United Kingdom Met Office Exeter
format Article in Journal/Newspaper
author Whaley, Cynthia, H.
Law, Kathy S.
Hjorth, Jens Liengaard
Skov, Henrik
Arnold, Stephen, R.
Langner, Joakim
Pernov, Jakob Boyd
Bergeron, Garance
Bourgeois, Ilann
Christensen, Jesper, H.
Chien, Rong-You
Deushi, Makoto
Dong, Xinyi
Effertz, Peter
Faluvegi, Gregory
Flanner, Mark
Fu, Joshua, S.
Gauss, Michael
Huey, L., Gregory
Im, Ulas
Kivi, Rigel
Marelle, Louis
Onishi, Tatsuo
Oshima, Naga
Petropavlovskikh, Irina
Peischl, Jeff
Plummer, David, A.
Pozzoli, Luca
Raut, Jean-Christophe
Ryerson, Tom
Skeie, Ragnhild
Solberg, Sverre
Thomas, Manu, A.
Thompson, Chelsea
Tsigaridis, Kostas
Tsyro, Svetlana
Turnock, Steven, T.
von Salzen, Knut
Tarasick, David, W.
author_facet Whaley, Cynthia, H.
Law, Kathy S.
Hjorth, Jens Liengaard
Skov, Henrik
Arnold, Stephen, R.
Langner, Joakim
Pernov, Jakob Boyd
Bergeron, Garance
Bourgeois, Ilann
Christensen, Jesper, H.
Chien, Rong-You
Deushi, Makoto
Dong, Xinyi
Effertz, Peter
Faluvegi, Gregory
Flanner, Mark
Fu, Joshua, S.
Gauss, Michael
Huey, L., Gregory
Im, Ulas
Kivi, Rigel
Marelle, Louis
Onishi, Tatsuo
Oshima, Naga
Petropavlovskikh, Irina
Peischl, Jeff
Plummer, David, A.
Pozzoli, Luca
Raut, Jean-Christophe
Ryerson, Tom
Skeie, Ragnhild
Solberg, Sverre
Thomas, Manu, A.
Thompson, Chelsea
Tsigaridis, Kostas
Tsyro, Svetlana
Turnock, Steven, T.
von Salzen, Knut
Tarasick, David, W.
author_sort Whaley, Cynthia, H.
title Arctic tropospheric ozone: assessment of current knowledge and model performance
title_short Arctic tropospheric ozone: assessment of current knowledge and model performance
title_full Arctic tropospheric ozone: assessment of current knowledge and model performance
title_fullStr Arctic tropospheric ozone: assessment of current knowledge and model performance
title_full_unstemmed Arctic tropospheric ozone: assessment of current knowledge and model performance
title_sort arctic tropospheric ozone: assessment of current knowledge and model performance
publisher HAL CCSD
publishDate 2023
url https://insu.hal.science/insu-03682231
https://insu.hal.science/insu-03682231v2/document
https://insu.hal.science/insu-03682231v2/file/acp-23-637-2023.pdf
https://doi.org/10.5194/acp-23-637-2023
genre Arctic
Human health
genre_facet Arctic
Human health
op_source ISSN: 1680-7316
EISSN: 1680-7324
Atmospheric Chemistry and Physics
https://insu.hal.science/insu-03682231
Atmospheric Chemistry and Physics, 2023, 23 (1), pp.637-661. ⟨10.5194/acp-23-637-2023⟩
op_relation info:eu-repo/semantics/altIdentifier/doi/10.5194/acp-23-637-2023
insu-03682231
https://insu.hal.science/insu-03682231
https://insu.hal.science/insu-03682231v2/document
https://insu.hal.science/insu-03682231v2/file/acp-23-637-2023.pdf
doi:10.5194/acp-23-637-2023
op_rights http://creativecommons.org/licenses/by/
info:eu-repo/semantics/OpenAccess
op_doi https://doi.org/10.5194/acp-23-637-2023
container_title Atmospheric Chemistry and Physics
container_volume 23
container_issue 1
container_start_page 637
op_container_end_page 661
_version_ 1799472599723409408
spelling ftuniversailles:oai:HAL:insu-03682231v2 2024-05-19T07:34:30+00:00 Arctic tropospheric ozone: assessment of current knowledge and model performance Whaley, Cynthia, H. Law, Kathy S. Hjorth, Jens Liengaard Skov, Henrik Arnold, Stephen, R. Langner, Joakim Pernov, Jakob Boyd Bergeron, Garance Bourgeois, Ilann Christensen, Jesper, H. Chien, Rong-You Deushi, Makoto Dong, Xinyi Effertz, Peter Faluvegi, Gregory Flanner, Mark Fu, Joshua, S. Gauss, Michael Huey, L., Gregory Im, Ulas Kivi, Rigel Marelle, Louis Onishi, Tatsuo Oshima, Naga Petropavlovskikh, Irina Peischl, Jeff Plummer, David, A. Pozzoli, Luca Raut, Jean-Christophe Ryerson, Tom Skeie, Ragnhild Solberg, Sverre Thomas, Manu, A. Thompson, Chelsea Tsigaridis, Kostas Tsyro, Svetlana Turnock, Steven, T. von Salzen, Knut Tarasick, David, W. Environment and Climate Change Canada (ECCC) TROPO - LATMOS Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS) Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS) iCLIMATE Aarhus University Interdisciplinary Centre for Climate Change Aarhus University Aarhus Institute for Climate and Atmospheric Science Leeds (ICAS) School of Earth and Environment Leeds (SEE) University of Leeds-University of Leeds Swedish Meteorological and Hydrological Institute (SMHI) Cooperative Institute for Research in Environmental Sciences (CIRES) University of Colorado Boulder -National Oceanic and Atmospheric Administration (NOAA) NOAA Chemical Sciences Laboratory (CSL) National Oceanic and Atmospheric Administration (NOAA) Extreme Environments Research Laboratory (EERL) Ecole Polytechnique Fédérale de Lausanne (EPFL) Plant Ecology Research Laboratory The University of Tennessee Knoxville Meteorological Research Institute Tsukuba (MRI) Japan Meteorological Agency (JMA) NASA Goddard Institute for Space Studies (GISS) NASA Goddard Space Flight Center (GSFC) Center for Climate Systems Research New York (CCSR) Columbia University New York Department of Climate and Space Sciences and Engineering (CLaSP) University of Michigan Ann Arbor University of Michigan System-University of Michigan System Norwegian Meteorological Institute Oslo (MET) School of Earth and Atmospheric Sciences Atlanta Georgia Institute of Technology Atlanta Finnish Meteorological Institute (FMI) ESRL Global Monitoring Laboratory Boulder (GML) NOAA Earth System Research Laboratory (ESRL) National Oceanic and Atmospheric Administration (NOAA)-National Oceanic and Atmospheric Administration (NOAA) European Commission - Joint Research Centre Ispra (JRC) FINCONS SPA Scientific Aviation, Inc. Center for International Climate and Environmental Research Oslo (CICERO) University of Oslo (UiO) Norwegian Institute for Air Research (NILU) Met Office Hadley Centre (MOHC) United Kingdom Met Office Exeter 2023 https://insu.hal.science/insu-03682231 https://insu.hal.science/insu-03682231v2/document https://insu.hal.science/insu-03682231v2/file/acp-23-637-2023.pdf https://doi.org/10.5194/acp-23-637-2023 en eng HAL CCSD European Geosciences Union info:eu-repo/semantics/altIdentifier/doi/10.5194/acp-23-637-2023 insu-03682231 https://insu.hal.science/insu-03682231 https://insu.hal.science/insu-03682231v2/document https://insu.hal.science/insu-03682231v2/file/acp-23-637-2023.pdf doi:10.5194/acp-23-637-2023 http://creativecommons.org/licenses/by/ info:eu-repo/semantics/OpenAccess ISSN: 1680-7316 EISSN: 1680-7324 Atmospheric Chemistry and Physics https://insu.hal.science/insu-03682231 Atmospheric Chemistry and Physics, 2023, 23 (1), pp.637-661. ⟨10.5194/acp-23-637-2023⟩ [PHYS.PHYS.PHYS-AO-PH]Physics [physics]/Physics [physics]/Atmospheric and Oceanic Physics [physics.ao-ph] [SDU.OCEAN]Sciences of the Universe [physics]/Ocean Atmosphere info:eu-repo/semantics/article Journal articles 2023 ftuniversailles https://doi.org/10.5194/acp-23-637-2023 2024-04-25T00:19:42Z International audience As the third most important greenhouse gas (GHG) after CO2 and methane, tropospheric ozone (O3) is also an air pollutant causing damage to human health and ecosystems. This study brings together recent research on observations and modeling of tropospheric O3 in the Arctic, a rapidly warming and sensitive environment. At different locations in the Arctic, the observed surface O3 seasonal cycles are quite different. Coastal Arctic locations, for example, have a minimum in the springtime due to O3 depletion events resulting from surface bromine chemistry. In contrast, other Arctic locations have a maximum in the spring. The 12 state-of-the-art models used in this study lack the surface halogen chemistry needed to simulate coastal Arctic surface O3 depletion in the springtime, however, the multi-model median (MMM) has accurate seasonal cycles at non-coastal Arctic locations. There is a large amount of variability among models, which has been reported previously, and we show that there continues to be no convergence among models, nor improved accuracy in simulating tropospheric O3 and its precursor species. The MMM underestimates Arctic surface O3 by 5% to 15% depending on the location. The vertical distribution of tropospheric O3 is studied from recent ozonesonde measurements and the models. The models are highly variable, simulating free-tropospheric O3 within a range of +/-50% depending on the model and the altitude. The MMM performs best, within +/-8% at most locations and seasons. However, nearly all models overestimate O3 near the tropopause (~300 hPa or ~8 km), likely due to ongoing issues with underestimating the altitude of the tropopause and excessive downward transport of stratospheric O3 at high latitudes. For example, the MMM is biased high by about 20% at Eureka. Observed and simulated O3 precursors (CO, NOx and reservoir PAN) are evaluated throughout the troposphere. Models underestimate wintertime CO everywhere, likely due to a combination of underestimating CO emissions and ... Article in Journal/Newspaper Arctic Human health Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQ Atmospheric Chemistry and Physics 23 1 637 661