Modelling the coupled mercury-halogen-ozone cycle in the central Arctic during spring
International audience Near-surface mercury and ozone depletion events occur in the lowest part of the atmosphere during Arctic spring. Mercury depletion is the first step in a process that transforms long-lived elemental mercury to more reactive forms within the Arctic that are deposited to the cry...
Published in: | Elem Sci Anth |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Other Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
HAL CCSD
2023
|
Subjects: | |
Online Access: | https://hal.science/hal-04233284 https://hal.science/hal-04233284/document https://hal.science/hal-04233284/file/elementa.2022.00129.pdf https://doi.org/10.1525/elementa.2022.00129 |
id |
ftuniversailles:oai:HAL:hal-04233284v1 |
---|---|
record_format |
openpolar |
institution |
Open Polar |
collection |
Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQ |
op_collection_id |
ftuniversailles |
language |
English |
topic |
Arctic Atmosphere Bromine Cryosphere Mercury Ozone [SDU]Sciences of the Universe [physics] [SDU.OCEAN]Sciences of the Universe [physics]/Ocean |
spellingShingle |
Arctic Atmosphere Bromine Cryosphere Mercury Ozone [SDU]Sciences of the Universe [physics] [SDU.OCEAN]Sciences of the Universe [physics]/Ocean Ahmed, Shaddy Thomas, Jennie L. Angot, Hélène Dommergue, Aurélien Archer, Stephen, D. Bariteau, Ludovic Beck, Ivo Benavent, Nuria Blechschmidt, Anne-Marlene Blomquist, Byron W. Boyer, Matthew C. Christensen, Jesper, H. Dahlke, Sandro Dastoor, Ashu Helmig, Detlev Howard, Dean A. Jacobi, Hans Werner Jokinen, Tuija Lapere, Rémy Laurila, Tiia M. Quéléver, Lauriane, L. J. Richter, Andreas Ryjkov, Andrei Mahajan, Anoop S. Marelle, Louis Pfaffhuber, Katrine Aspmo Posman, Kevin M. Rinke, Annette Saiz-Lopez, Alfonso Schmale, Julia Y. Skov, Henrik Steffen, Alexandra Stupple, Geoff W. Stutz, Jochen Travnikov, Oleg Zilker, Bianca Modelling the coupled mercury-halogen-ozone cycle in the central Arctic during spring |
topic_facet |
Arctic Atmosphere Bromine Cryosphere Mercury Ozone [SDU]Sciences of the Universe [physics] [SDU.OCEAN]Sciences of the Universe [physics]/Ocean |
description |
International audience Near-surface mercury and ozone depletion events occur in the lowest part of the atmosphere during Arctic spring. Mercury depletion is the first step in a process that transforms long-lived elemental mercury to more reactive forms within the Arctic that are deposited to the cryosphere, ocean, and other surfaces, which can ultimately get integrated into the Arctic food web. Depletion of both mercury and ozone occur due to the presence of reactive halogen radicals that are released from snow, ice, and aerosols. In this work, we added a detailed description of the Arctic atmospheric mercury cycle to our recently published version of the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem 4.3.3) that includes Arctic bromine and chlorine chemistry and activation/recycling on snow and aerosols. The major advantage of our modelling approach is the online calculation of bromine concentrations and emission/recycling that is required to simulate the hourly and daily variability of Arctic mercury depletion. We used this model to study coupling between reactive cycling of mercury, ozone, and bromine during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) spring season in 2020 and evaluated results compared to land-based, ship-based, and remote sensing observations. The model predicts that elemental mercury oxidation is driven largely by bromine chemistry and that particulate mercury is the major form of oxidized mercury. The model predicts that the majority (74%) of oxidized mercury deposited to land-based snow is re-emitted to the atmosphere as gaseous elemental mercury, while a minor fraction (4%) of oxidized mercury that is deposited to sea ice is re-emitted during spring. Our work demonstrates that hourly differences in bromine/ozone chemistry in the atmosphere must be considered to capture the springtime Arctic mercury cycle, including its integration into the cryosphere and ocean. Copyright: |
author2 |
Institut des Géosciences de l’Environnement (IGE) Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ) Université Grenoble Alpes (UGA) Extreme Environments Research Laboratory (EERL) Ecole Polytechnique Fédérale de Lausanne (EPFL) Institute of Arctic Alpine Research University of Colorado Boulder (INSTAAR) University of Colorado Boulder Bigelow Laboratory for Ocean Sciences Cooperative Institute for Research in Environmental Sciences (CIRES) University of Colorado Boulder -National Oceanic and Atmospheric Administration (NOAA) NOAA Physical Sciences Laboratory (PSL) National Oceanic and Atmospheric Administration (NOAA) Instituto de Química Física Rocasolano (IQFR) Consejo Superior de Investigaciones Cientificas = Spanish National Research Council (CSIC) Institute of Environmental Physics Bremen (IUP) University of Bremen Institute for Atmospheric and Earth System Research (INAR) Helsingin yliopisto = Helsingfors universitet = University of Helsinki iCLIMATE Aarhus University Interdisciplinary Centre for Climate Change Aarhus University Aarhus Alfred Wegener Institute Potsdam Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung = Alfred Wegener Institute for Polar and Marine Research = Institut Alfred-Wegener pour la recherche polaire et marine (AWI) Helmholtz-Gemeinschaft = Helmholtz Association-Helmholtz-Gemeinschaft = Helmholtz Association Environment and Climate Change Canada (ECCC) Cyprus Institute (CyI) Indian Institute of Tropical Meteorology (IITM) Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS) Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS) Norwegian Institute for Air Research (NILU) Department of Atmospheric and Oceanic Sciences Los Angeles (AOS) University of California Los Angeles (UCLA) University of California (UC)-University of California (UC) EMEP Meteorological Synthesising Centre-East (MSC-E) European Monitoring and Evaluation Programme (EMEP) European Environment Agency (EEA)-European Environment Agency (EEA) BROM-ARC, (AWI_PS122_00); Ecole Doctorale Sciences de la Terre, de l’Environnement et des Planètes, (ED105); European Union’s Horizon 2020 research and innovation framework programme, (101003590); GASPARCON, (714621); Northern Contaminants Program; National Science Foundation, NSF, (OPP 1807163, OPP 1914781); U.S. Department of Energy, USDOE, (DE-SC0019251); National Oceanic and Atmospheric Administration, NOAA; Office of Science, SC; Biological and Environmental Research, BER; Horizon 2020 Framework Programme, H2020, (101003826); H2020 European Research Council, ERC; Université Grenoble Alpes, UGA; European Research Council, ERC; Deutsche Forschungsgemeinschaft, DFG, (268020496 – TRR 172); Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung, SNF, (200021_188478); Academy of Finland, AKA, (337552); Institut national des sciences de l'Univers, INSU,CNRS; Ferring Pharmaceuticals; Miljøstyrelsen, DEPA, (2021 – 60333); Swiss Polar Institute, SPI |
format |
Article in Journal/Newspaper |
author |
Ahmed, Shaddy Thomas, Jennie L. Angot, Hélène Dommergue, Aurélien Archer, Stephen, D. Bariteau, Ludovic Beck, Ivo Benavent, Nuria Blechschmidt, Anne-Marlene Blomquist, Byron W. Boyer, Matthew C. Christensen, Jesper, H. Dahlke, Sandro Dastoor, Ashu Helmig, Detlev Howard, Dean A. Jacobi, Hans Werner Jokinen, Tuija Lapere, Rémy Laurila, Tiia M. Quéléver, Lauriane, L. J. Richter, Andreas Ryjkov, Andrei Mahajan, Anoop S. Marelle, Louis Pfaffhuber, Katrine Aspmo Posman, Kevin M. Rinke, Annette Saiz-Lopez, Alfonso Schmale, Julia Y. Skov, Henrik Steffen, Alexandra Stupple, Geoff W. Stutz, Jochen Travnikov, Oleg Zilker, Bianca |
author_facet |
Ahmed, Shaddy Thomas, Jennie L. Angot, Hélène Dommergue, Aurélien Archer, Stephen, D. Bariteau, Ludovic Beck, Ivo Benavent, Nuria Blechschmidt, Anne-Marlene Blomquist, Byron W. Boyer, Matthew C. Christensen, Jesper, H. Dahlke, Sandro Dastoor, Ashu Helmig, Detlev Howard, Dean A. Jacobi, Hans Werner Jokinen, Tuija Lapere, Rémy Laurila, Tiia M. Quéléver, Lauriane, L. J. Richter, Andreas Ryjkov, Andrei Mahajan, Anoop S. Marelle, Louis Pfaffhuber, Katrine Aspmo Posman, Kevin M. Rinke, Annette Saiz-Lopez, Alfonso Schmale, Julia Y. Skov, Henrik Steffen, Alexandra Stupple, Geoff W. Stutz, Jochen Travnikov, Oleg Zilker, Bianca |
author_sort |
Ahmed, Shaddy |
title |
Modelling the coupled mercury-halogen-ozone cycle in the central Arctic during spring |
title_short |
Modelling the coupled mercury-halogen-ozone cycle in the central Arctic during spring |
title_full |
Modelling the coupled mercury-halogen-ozone cycle in the central Arctic during spring |
title_fullStr |
Modelling the coupled mercury-halogen-ozone cycle in the central Arctic during spring |
title_full_unstemmed |
Modelling the coupled mercury-halogen-ozone cycle in the central Arctic during spring |
title_sort |
modelling the coupled mercury-halogen-ozone cycle in the central arctic during spring |
publisher |
HAL CCSD |
publishDate |
2023 |
url |
https://hal.science/hal-04233284 https://hal.science/hal-04233284/document https://hal.science/hal-04233284/file/elementa.2022.00129.pdf https://doi.org/10.1525/elementa.2022.00129 |
genre |
Arctic Sea ice |
genre_facet |
Arctic Sea ice |
op_source |
ISSN: 2325-1026 Elementa-science Of The Anthropocene https://hal.science/hal-04233284 Elementa-science Of The Anthropocene, 2023, 11 (1), pp.6237-6271. ⟨10.1525/elementa.2022.00129⟩ |
op_relation |
info:eu-repo/semantics/altIdentifier/doi/10.1525/elementa.2022.00129 hal-04233284 https://hal.science/hal-04233284 https://hal.science/hal-04233284/document https://hal.science/hal-04233284/file/elementa.2022.00129.pdf doi:10.1525/elementa.2022.00129 |
op_rights |
info:eu-repo/semantics/OpenAccess |
op_doi |
https://doi.org/10.1525/elementa.2022.00129 |
container_title |
Elem Sci Anth |
container_volume |
11 |
container_issue |
1 |
_version_ |
1796937359951921152 |
spelling |
ftuniversailles:oai:HAL:hal-04233284v1 2024-04-21T07:55:08+00:00 Modelling the coupled mercury-halogen-ozone cycle in the central Arctic during spring Ahmed, Shaddy Thomas, Jennie L. Angot, Hélène Dommergue, Aurélien Archer, Stephen, D. Bariteau, Ludovic Beck, Ivo Benavent, Nuria Blechschmidt, Anne-Marlene Blomquist, Byron W. Boyer, Matthew C. Christensen, Jesper, H. Dahlke, Sandro Dastoor, Ashu Helmig, Detlev Howard, Dean A. Jacobi, Hans Werner Jokinen, Tuija Lapere, Rémy Laurila, Tiia M. Quéléver, Lauriane, L. J. Richter, Andreas Ryjkov, Andrei Mahajan, Anoop S. Marelle, Louis Pfaffhuber, Katrine Aspmo Posman, Kevin M. Rinke, Annette Saiz-Lopez, Alfonso Schmale, Julia Y. Skov, Henrik Steffen, Alexandra Stupple, Geoff W. Stutz, Jochen Travnikov, Oleg Zilker, Bianca Institut des Géosciences de l’Environnement (IGE) Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ) Université Grenoble Alpes (UGA) Extreme Environments Research Laboratory (EERL) Ecole Polytechnique Fédérale de Lausanne (EPFL) Institute of Arctic Alpine Research University of Colorado Boulder (INSTAAR) University of Colorado Boulder Bigelow Laboratory for Ocean Sciences Cooperative Institute for Research in Environmental Sciences (CIRES) University of Colorado Boulder -National Oceanic and Atmospheric Administration (NOAA) NOAA Physical Sciences Laboratory (PSL) National Oceanic and Atmospheric Administration (NOAA) Instituto de Química Física Rocasolano (IQFR) Consejo Superior de Investigaciones Cientificas = Spanish National Research Council (CSIC) Institute of Environmental Physics Bremen (IUP) University of Bremen Institute for Atmospheric and Earth System Research (INAR) Helsingin yliopisto = Helsingfors universitet = University of Helsinki iCLIMATE Aarhus University Interdisciplinary Centre for Climate Change Aarhus University Aarhus Alfred Wegener Institute Potsdam Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung = Alfred Wegener Institute for Polar and Marine Research = Institut Alfred-Wegener pour la recherche polaire et marine (AWI) Helmholtz-Gemeinschaft = Helmholtz Association-Helmholtz-Gemeinschaft = Helmholtz Association Environment and Climate Change Canada (ECCC) Cyprus Institute (CyI) Indian Institute of Tropical Meteorology (IITM) Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS) Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS) Norwegian Institute for Air Research (NILU) Department of Atmospheric and Oceanic Sciences Los Angeles (AOS) University of California Los Angeles (UCLA) University of California (UC)-University of California (UC) EMEP Meteorological Synthesising Centre-East (MSC-E) European Monitoring and Evaluation Programme (EMEP) European Environment Agency (EEA)-European Environment Agency (EEA) BROM-ARC, (AWI_PS122_00); Ecole Doctorale Sciences de la Terre, de l’Environnement et des Planètes, (ED105); European Union’s Horizon 2020 research and innovation framework programme, (101003590); GASPARCON, (714621); Northern Contaminants Program; National Science Foundation, NSF, (OPP 1807163, OPP 1914781); U.S. Department of Energy, USDOE, (DE-SC0019251); National Oceanic and Atmospheric Administration, NOAA; Office of Science, SC; Biological and Environmental Research, BER; Horizon 2020 Framework Programme, H2020, (101003826); H2020 European Research Council, ERC; Université Grenoble Alpes, UGA; European Research Council, ERC; Deutsche Forschungsgemeinschaft, DFG, (268020496 – TRR 172); Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung, SNF, (200021_188478); Academy of Finland, AKA, (337552); Institut national des sciences de l'Univers, INSU,CNRS; Ferring Pharmaceuticals; Miljøstyrelsen, DEPA, (2021 – 60333); Swiss Polar Institute, SPI 2023 https://hal.science/hal-04233284 https://hal.science/hal-04233284/document https://hal.science/hal-04233284/file/elementa.2022.00129.pdf https://doi.org/10.1525/elementa.2022.00129 en eng HAL CCSD info:eu-repo/semantics/altIdentifier/doi/10.1525/elementa.2022.00129 hal-04233284 https://hal.science/hal-04233284 https://hal.science/hal-04233284/document https://hal.science/hal-04233284/file/elementa.2022.00129.pdf doi:10.1525/elementa.2022.00129 info:eu-repo/semantics/OpenAccess ISSN: 2325-1026 Elementa-science Of The Anthropocene https://hal.science/hal-04233284 Elementa-science Of The Anthropocene, 2023, 11 (1), pp.6237-6271. ⟨10.1525/elementa.2022.00129⟩ Arctic Atmosphere Bromine Cryosphere Mercury Ozone [SDU]Sciences of the Universe [physics] [SDU.OCEAN]Sciences of the Universe [physics]/Ocean info:eu-repo/semantics/article Journal articles 2023 ftuniversailles https://doi.org/10.1525/elementa.2022.00129 2024-04-11T00:00:39Z International audience Near-surface mercury and ozone depletion events occur in the lowest part of the atmosphere during Arctic spring. Mercury depletion is the first step in a process that transforms long-lived elemental mercury to more reactive forms within the Arctic that are deposited to the cryosphere, ocean, and other surfaces, which can ultimately get integrated into the Arctic food web. Depletion of both mercury and ozone occur due to the presence of reactive halogen radicals that are released from snow, ice, and aerosols. In this work, we added a detailed description of the Arctic atmospheric mercury cycle to our recently published version of the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem 4.3.3) that includes Arctic bromine and chlorine chemistry and activation/recycling on snow and aerosols. The major advantage of our modelling approach is the online calculation of bromine concentrations and emission/recycling that is required to simulate the hourly and daily variability of Arctic mercury depletion. We used this model to study coupling between reactive cycling of mercury, ozone, and bromine during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) spring season in 2020 and evaluated results compared to land-based, ship-based, and remote sensing observations. The model predicts that elemental mercury oxidation is driven largely by bromine chemistry and that particulate mercury is the major form of oxidized mercury. The model predicts that the majority (74%) of oxidized mercury deposited to land-based snow is re-emitted to the atmosphere as gaseous elemental mercury, while a minor fraction (4%) of oxidized mercury that is deposited to sea ice is re-emitted during spring. Our work demonstrates that hourly differences in bromine/ozone chemistry in the atmosphere must be considered to capture the springtime Arctic mercury cycle, including its integration into the cryosphere and ocean. Copyright: Article in Journal/Newspaper Arctic Sea ice Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQ Elem Sci Anth 11 1 |