A statistical method to model non-stationarity in precipitation records changes

International audience In the context of climate change, assessing how likely a particular change or event has been caused by human influence is important for mitigation and adaptation policies. In this work we propose an extreme event attribution (EEA) methodology to analyze yearly maxima records,...

Full description

Bibliographic Details
Main Authors: Gonzalez, Paula, Naveau, Philippe, Thao, Soulivanh, Worms, Julien
Other Authors: Laboratoire des Sciences du Climat et de l'Environnement Gif-sur-Yvette (LSCE), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Extrèmes : Statistiques, Impacts et Régionalisation (ESTIMR), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Laboratoire de Mathématiques de Versailles (LMV), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), FRAISE-LEFE/INSU, 80 PRIME CNRS-INSU, ANR-20-CE40-0025,T-REX,nouveaux challenges pour la prédiction des extremes et sa validation(2020), ANR-19-CE46-0011,MeLODy,Bridging geohysics and MachinE Learning for the modeling, simulation and reconstruction of Ocean DYnamics(2019), European Project: 101003469,XAIDA
Format: Report
Language:English
Published: HAL CCSD 2023
Subjects:
Online Access:https://hal.science/hal-04006516
https://hal.science/hal-04006516/document
https://hal.science/hal-04006516/file/Paula_article_Hal.pdf
id ftuniversailles:oai:HAL:hal-04006516v1
record_format openpolar
spelling ftuniversailles:oai:HAL:hal-04006516v1 2024-05-19T07:45:04+00:00 A statistical method to model non-stationarity in precipitation records changes Gonzalez, Paula Naveau, Philippe Thao, Soulivanh Worms, Julien Laboratoire des Sciences du Climat et de l'Environnement Gif-sur-Yvette (LSCE) Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)) Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA) Extrèmes : Statistiques, Impacts et Régionalisation (ESTIMR) Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)) Laboratoire de Mathématiques de Versailles (LMV) Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS) FRAISE-LEFE/INSU 80 PRIME CNRS-INSU ANR-20-CE40-0025,T-REX,nouveaux challenges pour la prédiction des extremes et sa validation(2020) ANR-19-CE46-0011,MeLODy,Bridging geohysics and MachinE Learning for the modeling, simulation and reconstruction of Ocean DYnamics(2019) European Project: 101003469,XAIDA 2023-02-27 https://hal.science/hal-04006516 https://hal.science/hal-04006516/document https://hal.science/hal-04006516/file/Paula_article_Hal.pdf en eng HAL CCSD info:eu-repo/grantAgreement//101003469/EU/eXtreme events : Artificial Intelligence for Detection and Attribution/XAIDA hal-04006516 https://hal.science/hal-04006516 https://hal.science/hal-04006516/document https://hal.science/hal-04006516/file/Paula_article_Hal.pdf info:eu-repo/semantics/OpenAccess https://hal.science/hal-04006516 2023 Extreme event attribution Climate extreme events Detection & attribution Precipitation [MATH.MATH-ST]Mathematics [math]/Statistics [math.ST] [SDU.STU]Sciences of the Universe [physics]/Earth Sciences info:eu-repo/semantics/preprint Preprints, Working Papers, . 2023 ftuniversailles 2024-05-02T00:02:05Z International audience In the context of climate change, assessing how likely a particular change or event has been caused by human influence is important for mitigation and adaptation policies. In this work we propose an extreme event attribution (EEA) methodology to analyze yearly maxima records, key indicators of climate change that spark media attention and research in the EEA community. Although they deserve a specific statistical treatment, algorithms tailored to record analysis are lacking. This is particularly true in a non-stationarity context. This work aims at filling this methodological gap by focusing on records in transient climate simulations. We apply our methodology to study records of yearly maxima of daily precipitation issued from numerical climate model IPSL-CM6A-LR. Illustrating our approach with decadal records, we detect in 2023 a clear human induced signal in half of the globe, with probability mostly increasing, but decreasing in the south and north Atlantic oceans Report North Atlantic Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQ
institution Open Polar
collection Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQ
op_collection_id ftuniversailles
language English
topic Extreme event attribution
Climate extreme events
Detection & attribution
Precipitation
[MATH.MATH-ST]Mathematics [math]/Statistics [math.ST]
[SDU.STU]Sciences of the Universe [physics]/Earth Sciences
spellingShingle Extreme event attribution
Climate extreme events
Detection & attribution
Precipitation
[MATH.MATH-ST]Mathematics [math]/Statistics [math.ST]
[SDU.STU]Sciences of the Universe [physics]/Earth Sciences
Gonzalez, Paula
Naveau, Philippe
Thao, Soulivanh
Worms, Julien
A statistical method to model non-stationarity in precipitation records changes
topic_facet Extreme event attribution
Climate extreme events
Detection & attribution
Precipitation
[MATH.MATH-ST]Mathematics [math]/Statistics [math.ST]
[SDU.STU]Sciences of the Universe [physics]/Earth Sciences
description International audience In the context of climate change, assessing how likely a particular change or event has been caused by human influence is important for mitigation and adaptation policies. In this work we propose an extreme event attribution (EEA) methodology to analyze yearly maxima records, key indicators of climate change that spark media attention and research in the EEA community. Although they deserve a specific statistical treatment, algorithms tailored to record analysis are lacking. This is particularly true in a non-stationarity context. This work aims at filling this methodological gap by focusing on records in transient climate simulations. We apply our methodology to study records of yearly maxima of daily precipitation issued from numerical climate model IPSL-CM6A-LR. Illustrating our approach with decadal records, we detect in 2023 a clear human induced signal in half of the globe, with probability mostly increasing, but decreasing in the south and north Atlantic oceans
author2 Laboratoire des Sciences du Climat et de l'Environnement Gif-sur-Yvette (LSCE)
Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Direction de Recherche Fondamentale (CEA) (DRF (CEA))
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)
Extrèmes : Statistiques, Impacts et Régionalisation (ESTIMR)
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Direction de Recherche Fondamentale (CEA) (DRF (CEA))
Laboratoire de Mathématiques de Versailles (LMV)
Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
FRAISE-LEFE/INSU
80 PRIME CNRS-INSU
ANR-20-CE40-0025,T-REX,nouveaux challenges pour la prédiction des extremes et sa validation(2020)
ANR-19-CE46-0011,MeLODy,Bridging geohysics and MachinE Learning for the modeling, simulation and reconstruction of Ocean DYnamics(2019)
European Project: 101003469,XAIDA
format Report
author Gonzalez, Paula
Naveau, Philippe
Thao, Soulivanh
Worms, Julien
author_facet Gonzalez, Paula
Naveau, Philippe
Thao, Soulivanh
Worms, Julien
author_sort Gonzalez, Paula
title A statistical method to model non-stationarity in precipitation records changes
title_short A statistical method to model non-stationarity in precipitation records changes
title_full A statistical method to model non-stationarity in precipitation records changes
title_fullStr A statistical method to model non-stationarity in precipitation records changes
title_full_unstemmed A statistical method to model non-stationarity in precipitation records changes
title_sort statistical method to model non-stationarity in precipitation records changes
publisher HAL CCSD
publishDate 2023
url https://hal.science/hal-04006516
https://hal.science/hal-04006516/document
https://hal.science/hal-04006516/file/Paula_article_Hal.pdf
genre North Atlantic
genre_facet North Atlantic
op_source https://hal.science/hal-04006516
2023
op_relation info:eu-repo/grantAgreement//101003469/EU/eXtreme events : Artificial Intelligence for Detection and Attribution/XAIDA
hal-04006516
https://hal.science/hal-04006516
https://hal.science/hal-04006516/document
https://hal.science/hal-04006516/file/Paula_article_Hal.pdf
op_rights info:eu-repo/semantics/OpenAccess
_version_ 1799485004494929920