Arctic Ocean acidification over the 21st century co-driven by anthropogenic carbon increases and freshening in the CMIP6 model ensemble
International audience The uptake of anthropogenic carbon (Cant) by the ocean leads to ocean acidification, causing the reduction of pH and the saturation states of aragonite (Ωarag) and calcite (Ωcalc). The Arctic Ocean is particularly vulnerable to ocean acidification due to its naturally low pH a...
Published in: | Biogeosciences |
---|---|
Main Authors: | , , , |
Other Authors: | , , , , , , , , , , , , , , , , , , , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
HAL CCSD
2021
|
Subjects: | |
Online Access: | https://hal.sorbonne-universite.fr/hal-03229469 https://hal.sorbonne-universite.fr/hal-03229469/document https://hal.sorbonne-universite.fr/hal-03229469/file/bg-18-2221-2021.pdf https://doi.org/10.5194/bg-18-2221-2021 |
id |
ftuniversailles:oai:HAL:hal-03229469v1 |
---|---|
record_format |
openpolar |
institution |
Open Polar |
collection |
Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQ |
op_collection_id |
ftuniversailles |
language |
English |
topic |
[SDE]Environmental Sciences |
spellingShingle |
[SDE]Environmental Sciences Terhaar, Jens Torres, Olivier Bourgeois, Timothée Kwiatkowski, Lester Arctic Ocean acidification over the 21st century co-driven by anthropogenic carbon increases and freshening in the CMIP6 model ensemble |
topic_facet |
[SDE]Environmental Sciences |
description |
International audience The uptake of anthropogenic carbon (Cant) by the ocean leads to ocean acidification, causing the reduction of pH and the saturation states of aragonite (Ωarag) and calcite (Ωcalc). The Arctic Ocean is particularly vulnerable to ocean acidification due to its naturally low pH and saturation states and due to ongoing freshening and the concurrent reduction in total alkalinity in this region. Here, we analyse ocean acidification in the Arctic Ocean over the 21st century across 14 Earth system models (ESMs) from the latest Coupled Model Intercomparison Project Phase 6 (CMIP6). Compared to the previous model generation (CMIP5), models generally better simulate maximum sea surface densities in the Arctic Ocean and consequently the transport of Cant into the Arctic Ocean interior, with simulated historical increases in Cant in improved agreement with observational products. Moreover, in CMIP6 the inter-model uncertainty of projected changes over the 21st century in Arctic Ocean Ωarag and Ωcalc averaged over the upper 1000 m is reduced by 44–64 %. The strong reduction in projection uncertainties of Ωarag and Ωcalc can be attributed to compensation between Cant uptake and total alkalinity reduction in the latest models. Specifically, ESMs with a large increase in Arctic Ocean Cant over the 21st century tend to simulate a relatively weak concurrent freshening and alkalinity reduction, while ESMs with a small increase in Cant simulate a relatively strong freshening and concurrent total alkalinity reduction. Although both mechanisms contribute to Arctic Ocean acidification over the 21st century, the increase in Cant remains the dominant driver. Even under the low-emissions Shared Socioeconomic Pathway 1-2.6 (SSP1-2.6), basin-wide averaged Ωarag undersaturation in the upper 1000 m occurs before the end of the century. While under the high-emissions pathway SSP5-8.5, the Arctic Ocean mesopelagic is projected to even become undersaturated with respect to calcite. An emergent constraint identified in ... |
author2 |
Physics Institute Bern Universität Bern / University of Bern (UNIBE) Oeschger Centre for Climate Change Research (OCCR) Laboratoire de Météorologie Dynamique (UMR 8539) (LMD) Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-École des Ponts ParisTech (ENPC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Département des Géosciences - ENS Paris École normale supérieure - Paris (ENS-PSL) Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-École normale supérieure - Paris (ENS-PSL) Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL) Bjerknes Centre for Climate Research (BCCR) Department of Biological Sciences Bergen (BIO / UiB) University of Bergen (UiB)-University of Bergen (UiB) Nucleus for European Modeling of the Ocean (NEMO R&D ) Laboratoire d'Océanographie et du Climat : Expérimentations et Approches Numériques (LOCEAN) Muséum national d'Histoire naturelle (MNHN)-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut Pierre-Simon-Laplace (IPSL (FR_636)) Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-Centre National d'Études Spatiales Toulouse (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-École normale supérieure - Paris (ENS-PSL) Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-École polytechnique (X)-Centre National d'Études Spatiales Toulouse (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Muséum national d'Histoire naturelle (MNHN)-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut Pierre-Simon-Laplace (IPSL (FR_636)) Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-École polytechnique (X)-Centre National d'Études Spatiales Toulouse (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité) Horizon 2020 4C (grant no. 821003), ANR-18-ERC2-0001,CONVINCE,Contraindre la réponse de la biogéochimie marine au changement climatique(2018) European Project: 641816,H2020,H2020-SC5-2014-two-stage,CRESCENDO(2015) European Project: 820989,H2020-EU.3.5.1.,COMFORT(2019) |
format |
Article in Journal/Newspaper |
author |
Terhaar, Jens Torres, Olivier Bourgeois, Timothée Kwiatkowski, Lester |
author_facet |
Terhaar, Jens Torres, Olivier Bourgeois, Timothée Kwiatkowski, Lester |
author_sort |
Terhaar, Jens |
title |
Arctic Ocean acidification over the 21st century co-driven by anthropogenic carbon increases and freshening in the CMIP6 model ensemble |
title_short |
Arctic Ocean acidification over the 21st century co-driven by anthropogenic carbon increases and freshening in the CMIP6 model ensemble |
title_full |
Arctic Ocean acidification over the 21st century co-driven by anthropogenic carbon increases and freshening in the CMIP6 model ensemble |
title_fullStr |
Arctic Ocean acidification over the 21st century co-driven by anthropogenic carbon increases and freshening in the CMIP6 model ensemble |
title_full_unstemmed |
Arctic Ocean acidification over the 21st century co-driven by anthropogenic carbon increases and freshening in the CMIP6 model ensemble |
title_sort |
arctic ocean acidification over the 21st century co-driven by anthropogenic carbon increases and freshening in the cmip6 model ensemble |
publisher |
HAL CCSD |
publishDate |
2021 |
url |
https://hal.sorbonne-universite.fr/hal-03229469 https://hal.sorbonne-universite.fr/hal-03229469/document https://hal.sorbonne-universite.fr/hal-03229469/file/bg-18-2221-2021.pdf https://doi.org/10.5194/bg-18-2221-2021 |
genre |
Arctic Arctic Ocean Arctic Ocean Acidification Ocean acidification |
genre_facet |
Arctic Arctic Ocean Arctic Ocean Acidification Ocean acidification |
op_source |
ISSN: 1726-4170 EISSN: 1726-4189 Biogeosciences https://hal.sorbonne-universite.fr/hal-03229469 Biogeosciences, 2021, 18 (6), pp.2221 - 2240. ⟨10.5194/bg-18-2221-2021⟩ |
op_relation |
info:eu-repo/semantics/altIdentifier/doi/10.5194/bg-18-2221-2021 info:eu-repo/grantAgreement//641816/EU/Coordinated Research in Earth Systems and Climate: Experiments, kNowledge, Dissemination and Outreach/CRESCENDO info:eu-repo/grantAgreement//820989/EU/Our common future ocean in the Earth system – quantifying coupled cycles of carbon, oxygen, and nutrients for determining and achieving safe operating spaces with respect to tipping points/COMFORT hal-03229469 https://hal.sorbonne-universite.fr/hal-03229469 https://hal.sorbonne-universite.fr/hal-03229469/document https://hal.sorbonne-universite.fr/hal-03229469/file/bg-18-2221-2021.pdf doi:10.5194/bg-18-2221-2021 WOS: 000636693500001 |
op_rights |
info:eu-repo/semantics/OpenAccess |
op_doi |
https://doi.org/10.5194/bg-18-2221-2021 |
container_title |
Biogeosciences |
container_volume |
18 |
container_issue |
6 |
container_start_page |
2221 |
op_container_end_page |
2240 |
_version_ |
1799472115062145024 |
spelling |
ftuniversailles:oai:HAL:hal-03229469v1 2024-05-19T07:34:06+00:00 Arctic Ocean acidification over the 21st century co-driven by anthropogenic carbon increases and freshening in the CMIP6 model ensemble Terhaar, Jens Torres, Olivier Bourgeois, Timothée Kwiatkowski, Lester Physics Institute Bern Universität Bern / University of Bern (UNIBE) Oeschger Centre for Climate Change Research (OCCR) Laboratoire de Météorologie Dynamique (UMR 8539) (LMD) Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-École des Ponts ParisTech (ENPC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Département des Géosciences - ENS Paris École normale supérieure - Paris (ENS-PSL) Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-École normale supérieure - Paris (ENS-PSL) Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL) Bjerknes Centre for Climate Research (BCCR) Department of Biological Sciences Bergen (BIO / UiB) University of Bergen (UiB)-University of Bergen (UiB) Nucleus for European Modeling of the Ocean (NEMO R&D ) Laboratoire d'Océanographie et du Climat : Expérimentations et Approches Numériques (LOCEAN) Muséum national d'Histoire naturelle (MNHN)-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut Pierre-Simon-Laplace (IPSL (FR_636)) Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-Centre National d'Études Spatiales Toulouse (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-École normale supérieure - Paris (ENS-PSL) Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-École polytechnique (X)-Centre National d'Études Spatiales Toulouse (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Muséum national d'Histoire naturelle (MNHN)-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut Pierre-Simon-Laplace (IPSL (FR_636)) Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-École polytechnique (X)-Centre National d'Études Spatiales Toulouse (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité) Horizon 2020 4C (grant no. 821003), ANR-18-ERC2-0001,CONVINCE,Contraindre la réponse de la biogéochimie marine au changement climatique(2018) European Project: 641816,H2020,H2020-SC5-2014-two-stage,CRESCENDO(2015) European Project: 820989,H2020-EU.3.5.1.,COMFORT(2019) 2021-04-01 https://hal.sorbonne-universite.fr/hal-03229469 https://hal.sorbonne-universite.fr/hal-03229469/document https://hal.sorbonne-universite.fr/hal-03229469/file/bg-18-2221-2021.pdf https://doi.org/10.5194/bg-18-2221-2021 en eng HAL CCSD European Geosciences Union info:eu-repo/semantics/altIdentifier/doi/10.5194/bg-18-2221-2021 info:eu-repo/grantAgreement//641816/EU/Coordinated Research in Earth Systems and Climate: Experiments, kNowledge, Dissemination and Outreach/CRESCENDO info:eu-repo/grantAgreement//820989/EU/Our common future ocean in the Earth system – quantifying coupled cycles of carbon, oxygen, and nutrients for determining and achieving safe operating spaces with respect to tipping points/COMFORT hal-03229469 https://hal.sorbonne-universite.fr/hal-03229469 https://hal.sorbonne-universite.fr/hal-03229469/document https://hal.sorbonne-universite.fr/hal-03229469/file/bg-18-2221-2021.pdf doi:10.5194/bg-18-2221-2021 WOS: 000636693500001 info:eu-repo/semantics/OpenAccess ISSN: 1726-4170 EISSN: 1726-4189 Biogeosciences https://hal.sorbonne-universite.fr/hal-03229469 Biogeosciences, 2021, 18 (6), pp.2221 - 2240. ⟨10.5194/bg-18-2221-2021⟩ [SDE]Environmental Sciences info:eu-repo/semantics/article Journal articles 2021 ftuniversailles https://doi.org/10.5194/bg-18-2221-2021 2024-04-25T00:26:17Z International audience The uptake of anthropogenic carbon (Cant) by the ocean leads to ocean acidification, causing the reduction of pH and the saturation states of aragonite (Ωarag) and calcite (Ωcalc). The Arctic Ocean is particularly vulnerable to ocean acidification due to its naturally low pH and saturation states and due to ongoing freshening and the concurrent reduction in total alkalinity in this region. Here, we analyse ocean acidification in the Arctic Ocean over the 21st century across 14 Earth system models (ESMs) from the latest Coupled Model Intercomparison Project Phase 6 (CMIP6). Compared to the previous model generation (CMIP5), models generally better simulate maximum sea surface densities in the Arctic Ocean and consequently the transport of Cant into the Arctic Ocean interior, with simulated historical increases in Cant in improved agreement with observational products. Moreover, in CMIP6 the inter-model uncertainty of projected changes over the 21st century in Arctic Ocean Ωarag and Ωcalc averaged over the upper 1000 m is reduced by 44–64 %. The strong reduction in projection uncertainties of Ωarag and Ωcalc can be attributed to compensation between Cant uptake and total alkalinity reduction in the latest models. Specifically, ESMs with a large increase in Arctic Ocean Cant over the 21st century tend to simulate a relatively weak concurrent freshening and alkalinity reduction, while ESMs with a small increase in Cant simulate a relatively strong freshening and concurrent total alkalinity reduction. Although both mechanisms contribute to Arctic Ocean acidification over the 21st century, the increase in Cant remains the dominant driver. Even under the low-emissions Shared Socioeconomic Pathway 1-2.6 (SSP1-2.6), basin-wide averaged Ωarag undersaturation in the upper 1000 m occurs before the end of the century. While under the high-emissions pathway SSP5-8.5, the Arctic Ocean mesopelagic is projected to even become undersaturated with respect to calcite. An emergent constraint identified in ... Article in Journal/Newspaper Arctic Arctic Ocean Arctic Ocean Acidification Ocean acidification Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQ Biogeosciences 18 6 2221 2240 |