DeepMIP: Model intercomparison of early Eocene climatic optimum (EECO) large-scale climate features and comparison with proxy data
International audience We present results from an ensemble of eight climate models, each of which has carried out simulations of the early Eocene climate optimum (EECO, g1/4 50 million years ago). These simulations have been carried out in the framework of the Deep-Time Model Intercomparison Project...
Published in: | Climate of the Past |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Other Authors: | , , , , , , , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
HAL CCSD
2021
|
Subjects: | |
Online Access: | https://hal.science/hal-03127486 https://hal.science/hal-03127486/document https://hal.science/hal-03127486/file/cp-17-203-2021.pdf https://doi.org/10.5194/cp-17-203-2021 |
id |
ftuniversailles:oai:HAL:hal-03127486v1 |
---|---|
record_format |
openpolar |
institution |
Open Polar |
collection |
Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQ |
op_collection_id |
ftuniversailles |
language |
English |
topic |
[SDU.ENVI]Sciences of the Universe [physics]/Continental interfaces environment [SDU]Sciences of the Universe [physics] |
spellingShingle |
[SDU.ENVI]Sciences of the Universe [physics]/Continental interfaces environment [SDU]Sciences of the Universe [physics] Lunt, Daniel J. Bragg, Fran J. Chan, Wing Le Hutchinson, David Karel Ladant, Jean Baptiste Morozova, Polina A. Niezgodzki, Igor Steinig, Sebastian Zhang, Zhongshi Zhu, Jiang Abe-Ouchi, Ayako Anagnostou, Eleni de Boer, Agatha M. Coxall, Helen K. Donnadieu, Yannick Foster, Gavin L. Inglis, Gordon N. Knorr, Gregor Langebroek, Petra M. Lear, Caroline H. Lohmann, Gerrit Poulsen, Christopher J. Sepulchre, Pierre Tierney, Jessica E. Valdes, Paul J. Volodin, Evgenii Mikhailovich Dunkley Jones, Tom Hollis, Christopher John Huber, Matthew Otto-Bliesner, Bette L. DeepMIP: Model intercomparison of early Eocene climatic optimum (EECO) large-scale climate features and comparison with proxy data |
topic_facet |
[SDU.ENVI]Sciences of the Universe [physics]/Continental interfaces environment [SDU]Sciences of the Universe [physics] |
description |
International audience We present results from an ensemble of eight climate models, each of which has carried out simulations of the early Eocene climate optimum (EECO, g1/4 50 million years ago). These simulations have been carried out in the framework of the Deep-Time Model Intercomparison Project (DeepMIP; http://www.deepmip.org, last access: 10 January 2021); thus, all models have been configured with the same paleogeographic and vegetation boundary conditions. The results indicate that these non-CO2 boundary conditions contribute between 3 and 5 g C to Eocene warmth. Compared with results from previous studies, the DeepMIP simulations generally show a reduced spread of the global mean surface temperature response across the ensemble for a given atmospheric CO2 concentration as well as an increased climate sensitivity on average. An energy balance analysis of the model ensemble indicates that global mean warming in the Eocene compared with the preindustrial period mostly arises from decreases in emissivity due to the elevated CO2 concentration (and associated water vapour and long-wave cloud feedbacks), whereas the reduction in the Eocene in terms of the meridional temperature gradient is primarily due to emissivity and albedo changes owing to the non-CO2 boundary conditions (i.e. the removal of the Antarctic ice sheet and changes in vegetation). Three of the models (the Community Earth System Model, CESM; the Geophysical Fluid Dynamics Laboratory, GFDL, model; and the Norwegian Earth System Model, NorESM) show results that are consistent with the proxies in terms of the global mean temperature, meridional SST gradient, and CO2, without prescribing changes to model parameters. In addition, many of the models agree well with the first-order spatial patterns in the SST proxies. However, at a more regional scale, the models lack skill. In particular, the modelled anomalies are substantially lower than those indicated by the proxies in the southwest Pacific; here, modelled continental surface air temperature ... |
author2 |
Centre européen de recherche et d'enseignement des géosciences de l'environnement (CEREGE) Institut de Recherche pour le Développement (IRD)-Aix Marseille Université (AMU)-Collège de France (CdF (institution))-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) Laboratoire des Sciences du Climat et de l'Environnement Gif-sur-Yvette (LSCE) Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)) Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA) Modélisation du climat (CLIM) Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)) National Science Foundation, NSF Natural Environment Research Council, NERC: NE/N006828/1, NE/P01903X/1 Vetenskapsrådet, VR: 2016-03912 National Center for Atmospheric Research, NCAR: 0148-2019-0009, 1852977, NE/P013112/1 ATM-0902780, OCE-0902882 Royal Society Svenska Forskningsrådet Formas: 2018-01621 Japan Society for the Promotion of Science, KAKEN: 17H06104 Ministry of Education, Culture, Sports, Science and Technology, Monbusho: 17H06323 European Research Council, ERC: 340923 Heising-Simons Foundation, HSF: 2016-015 Acknowledgements. Daniel J. Lunt, Sebastian Steinig, Paul Valdes, and Fran Bragg acknowledge funding from the NERC SWEET grant (grant no. NE/P01903X/1). Daniel J. Lunt also acknowledges funding from NERC DeepMIP grant (grant no. NE/N006828/1) and the ERC (“The greenhouse earth system” grant; T-GRES, project reference no. 340923, awarded to Rich Pancost). Christopher J. Poulsen and Jessica E. Tierney acknowledge funding from the Heising-Simons Foundation (grant no. 2016-015). Jiang Zhu and Christopher J. Poulsen wish to thank Jeff Kiehl, Christine Shields, and Mathew Rothstein for providing the CESM code as well as boundary and initial condition files for the CESM simulations. Wing-Le Chan and Ayako Abe-Ouchi acknowledge funding from JSPS KAKENHI (grant no. 17H06104) and MEXT KAKENHI (grant no. 17H06323), and are grateful to JAMSTEC for use of the Earth Simulator. David K. Hutchinson and Agatha M. de Boer were supported by the Swedish Research Council (project no. 2016-03912) and FORMAS (project no. 2018-01621). Their numerical simulations were performed using resources provided by the Swedish National Infrastructure for Computing (SNIC) at NSC, Linköping. Pierre Sepulchre, Jean-Baptiste Ladant, and Yannick Donnadieu were granted access to the HPC resources of TGCC under the allocation no. 2019- A0050102212 made by GENCI. The HadCM3 simulations were carried out using the computational facilities of the Advanced Computing Research Centre, University of Bristol (http://www. bristol.ac.uk/acrc/, last access: 10 January 2021). Gordon N. In-glis acknowledges a Royal Society Dorothy Hodgkin Fellowship. Matthew Huber was funded by the US National Science Foundation (NSF; grant nos. ATM-0902780 and OCE-0902882). Bette L. Otto-Bliesner acknowledges the CESM project, which is primarily supported by the National Science Foundation (NSF). This material is based upon work supported by the National Center for Atmospheric Research (NCAR), which is a major facility sponsored by the NSF under cooperative agreement no. 1852977. Computing and data storage resources, including the Cheyenne supercomputer (https://doi.org/10.5065/D6RX99HX), were provided by the Computational and Information Systems Laboratory (CISL) at NCAR. Tom Dunkley Jones was supported by NERC (grant no. NE/P013112/1). Polina Morozova was supported by the state assignment project no. 0148-2019-0009. |
format |
Article in Journal/Newspaper |
author |
Lunt, Daniel J. Bragg, Fran J. Chan, Wing Le Hutchinson, David Karel Ladant, Jean Baptiste Morozova, Polina A. Niezgodzki, Igor Steinig, Sebastian Zhang, Zhongshi Zhu, Jiang Abe-Ouchi, Ayako Anagnostou, Eleni de Boer, Agatha M. Coxall, Helen K. Donnadieu, Yannick Foster, Gavin L. Inglis, Gordon N. Knorr, Gregor Langebroek, Petra M. Lear, Caroline H. Lohmann, Gerrit Poulsen, Christopher J. Sepulchre, Pierre Tierney, Jessica E. Valdes, Paul J. Volodin, Evgenii Mikhailovich Dunkley Jones, Tom Hollis, Christopher John Huber, Matthew Otto-Bliesner, Bette L. |
author_facet |
Lunt, Daniel J. Bragg, Fran J. Chan, Wing Le Hutchinson, David Karel Ladant, Jean Baptiste Morozova, Polina A. Niezgodzki, Igor Steinig, Sebastian Zhang, Zhongshi Zhu, Jiang Abe-Ouchi, Ayako Anagnostou, Eleni de Boer, Agatha M. Coxall, Helen K. Donnadieu, Yannick Foster, Gavin L. Inglis, Gordon N. Knorr, Gregor Langebroek, Petra M. Lear, Caroline H. Lohmann, Gerrit Poulsen, Christopher J. Sepulchre, Pierre Tierney, Jessica E. Valdes, Paul J. Volodin, Evgenii Mikhailovich Dunkley Jones, Tom Hollis, Christopher John Huber, Matthew Otto-Bliesner, Bette L. |
author_sort |
Lunt, Daniel J. |
title |
DeepMIP: Model intercomparison of early Eocene climatic optimum (EECO) large-scale climate features and comparison with proxy data |
title_short |
DeepMIP: Model intercomparison of early Eocene climatic optimum (EECO) large-scale climate features and comparison with proxy data |
title_full |
DeepMIP: Model intercomparison of early Eocene climatic optimum (EECO) large-scale climate features and comparison with proxy data |
title_fullStr |
DeepMIP: Model intercomparison of early Eocene climatic optimum (EECO) large-scale climate features and comparison with proxy data |
title_full_unstemmed |
DeepMIP: Model intercomparison of early Eocene climatic optimum (EECO) large-scale climate features and comparison with proxy data |
title_sort |
deepmip: model intercomparison of early eocene climatic optimum (eeco) large-scale climate features and comparison with proxy data |
publisher |
HAL CCSD |
publishDate |
2021 |
url |
https://hal.science/hal-03127486 https://hal.science/hal-03127486/document https://hal.science/hal-03127486/file/cp-17-203-2021.pdf https://doi.org/10.5194/cp-17-203-2021 |
genre |
Antarc* Antarctic Ice Sheet |
genre_facet |
Antarc* Antarctic Ice Sheet |
op_source |
ISSN: 1814-9324 EISSN: 1814-9332 Climate of the Past https://hal.science/hal-03127486 Climate of the Past, 2021, 17 (1), pp.203-227. ⟨10.5194/cp-17-203-2021⟩ |
op_relation |
info:eu-repo/semantics/altIdentifier/doi/10.5194/cp-17-203-2021 hal-03127486 https://hal.science/hal-03127486 https://hal.science/hal-03127486/document https://hal.science/hal-03127486/file/cp-17-203-2021.pdf doi:10.5194/cp-17-203-2021 WOS: 000611361500003 |
op_rights |
http://creativecommons.org/licenses/by/ info:eu-repo/semantics/OpenAccess |
op_doi |
https://doi.org/10.5194/cp-17-203-2021 |
container_title |
Climate of the Past |
container_volume |
17 |
container_issue |
1 |
container_start_page |
203 |
op_container_end_page |
227 |
_version_ |
1797571898564935680 |
spelling |
ftuniversailles:oai:HAL:hal-03127486v1 2024-04-28T07:58:49+00:00 DeepMIP: Model intercomparison of early Eocene climatic optimum (EECO) large-scale climate features and comparison with proxy data Lunt, Daniel J. Bragg, Fran J. Chan, Wing Le Hutchinson, David Karel Ladant, Jean Baptiste Morozova, Polina A. Niezgodzki, Igor Steinig, Sebastian Zhang, Zhongshi Zhu, Jiang Abe-Ouchi, Ayako Anagnostou, Eleni de Boer, Agatha M. Coxall, Helen K. Donnadieu, Yannick Foster, Gavin L. Inglis, Gordon N. Knorr, Gregor Langebroek, Petra M. Lear, Caroline H. Lohmann, Gerrit Poulsen, Christopher J. Sepulchre, Pierre Tierney, Jessica E. Valdes, Paul J. Volodin, Evgenii Mikhailovich Dunkley Jones, Tom Hollis, Christopher John Huber, Matthew Otto-Bliesner, Bette L. Centre européen de recherche et d'enseignement des géosciences de l'environnement (CEREGE) Institut de Recherche pour le Développement (IRD)-Aix Marseille Université (AMU)-Collège de France (CdF (institution))-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) Laboratoire des Sciences du Climat et de l'Environnement Gif-sur-Yvette (LSCE) Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)) Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA) Modélisation du climat (CLIM) Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)) National Science Foundation, NSF Natural Environment Research Council, NERC: NE/N006828/1, NE/P01903X/1 Vetenskapsrådet, VR: 2016-03912 National Center for Atmospheric Research, NCAR: 0148-2019-0009, 1852977, NE/P013112/1 ATM-0902780, OCE-0902882 Royal Society Svenska Forskningsrådet Formas: 2018-01621 Japan Society for the Promotion of Science, KAKEN: 17H06104 Ministry of Education, Culture, Sports, Science and Technology, Monbusho: 17H06323 European Research Council, ERC: 340923 Heising-Simons Foundation, HSF: 2016-015 Acknowledgements. Daniel J. Lunt, Sebastian Steinig, Paul Valdes, and Fran Bragg acknowledge funding from the NERC SWEET grant (grant no. NE/P01903X/1). Daniel J. Lunt also acknowledges funding from NERC DeepMIP grant (grant no. NE/N006828/1) and the ERC (“The greenhouse earth system” grant; T-GRES, project reference no. 340923, awarded to Rich Pancost). Christopher J. Poulsen and Jessica E. Tierney acknowledge funding from the Heising-Simons Foundation (grant no. 2016-015). Jiang Zhu and Christopher J. Poulsen wish to thank Jeff Kiehl, Christine Shields, and Mathew Rothstein for providing the CESM code as well as boundary and initial condition files for the CESM simulations. Wing-Le Chan and Ayako Abe-Ouchi acknowledge funding from JSPS KAKENHI (grant no. 17H06104) and MEXT KAKENHI (grant no. 17H06323), and are grateful to JAMSTEC for use of the Earth Simulator. David K. Hutchinson and Agatha M. de Boer were supported by the Swedish Research Council (project no. 2016-03912) and FORMAS (project no. 2018-01621). Their numerical simulations were performed using resources provided by the Swedish National Infrastructure for Computing (SNIC) at NSC, Linköping. Pierre Sepulchre, Jean-Baptiste Ladant, and Yannick Donnadieu were granted access to the HPC resources of TGCC under the allocation no. 2019- A0050102212 made by GENCI. The HadCM3 simulations were carried out using the computational facilities of the Advanced Computing Research Centre, University of Bristol (http://www. bristol.ac.uk/acrc/, last access: 10 January 2021). Gordon N. In-glis acknowledges a Royal Society Dorothy Hodgkin Fellowship. Matthew Huber was funded by the US National Science Foundation (NSF; grant nos. ATM-0902780 and OCE-0902882). Bette L. Otto-Bliesner acknowledges the CESM project, which is primarily supported by the National Science Foundation (NSF). This material is based upon work supported by the National Center for Atmospheric Research (NCAR), which is a major facility sponsored by the NSF under cooperative agreement no. 1852977. Computing and data storage resources, including the Cheyenne supercomputer (https://doi.org/10.5065/D6RX99HX), were provided by the Computational and Information Systems Laboratory (CISL) at NCAR. Tom Dunkley Jones was supported by NERC (grant no. NE/P013112/1). Polina Morozova was supported by the state assignment project no. 0148-2019-0009. 2021 https://hal.science/hal-03127486 https://hal.science/hal-03127486/document https://hal.science/hal-03127486/file/cp-17-203-2021.pdf https://doi.org/10.5194/cp-17-203-2021 en eng HAL CCSD European Geosciences Union (EGU) info:eu-repo/semantics/altIdentifier/doi/10.5194/cp-17-203-2021 hal-03127486 https://hal.science/hal-03127486 https://hal.science/hal-03127486/document https://hal.science/hal-03127486/file/cp-17-203-2021.pdf doi:10.5194/cp-17-203-2021 WOS: 000611361500003 http://creativecommons.org/licenses/by/ info:eu-repo/semantics/OpenAccess ISSN: 1814-9324 EISSN: 1814-9332 Climate of the Past https://hal.science/hal-03127486 Climate of the Past, 2021, 17 (1), pp.203-227. ⟨10.5194/cp-17-203-2021⟩ [SDU.ENVI]Sciences of the Universe [physics]/Continental interfaces environment [SDU]Sciences of the Universe [physics] info:eu-repo/semantics/article Journal articles 2021 ftuniversailles https://doi.org/10.5194/cp-17-203-2021 2024-04-04T17:34:31Z International audience We present results from an ensemble of eight climate models, each of which has carried out simulations of the early Eocene climate optimum (EECO, g1/4 50 million years ago). These simulations have been carried out in the framework of the Deep-Time Model Intercomparison Project (DeepMIP; http://www.deepmip.org, last access: 10 January 2021); thus, all models have been configured with the same paleogeographic and vegetation boundary conditions. The results indicate that these non-CO2 boundary conditions contribute between 3 and 5 g C to Eocene warmth. Compared with results from previous studies, the DeepMIP simulations generally show a reduced spread of the global mean surface temperature response across the ensemble for a given atmospheric CO2 concentration as well as an increased climate sensitivity on average. An energy balance analysis of the model ensemble indicates that global mean warming in the Eocene compared with the preindustrial period mostly arises from decreases in emissivity due to the elevated CO2 concentration (and associated water vapour and long-wave cloud feedbacks), whereas the reduction in the Eocene in terms of the meridional temperature gradient is primarily due to emissivity and albedo changes owing to the non-CO2 boundary conditions (i.e. the removal of the Antarctic ice sheet and changes in vegetation). Three of the models (the Community Earth System Model, CESM; the Geophysical Fluid Dynamics Laboratory, GFDL, model; and the Norwegian Earth System Model, NorESM) show results that are consistent with the proxies in terms of the global mean temperature, meridional SST gradient, and CO2, without prescribing changes to model parameters. In addition, many of the models agree well with the first-order spatial patterns in the SST proxies. However, at a more regional scale, the models lack skill. In particular, the modelled anomalies are substantially lower than those indicated by the proxies in the southwest Pacific; here, modelled continental surface air temperature ... Article in Journal/Newspaper Antarc* Antarctic Ice Sheet Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQ Climate of the Past 17 1 203 227 |