Seasonal patterns in greenhouse gas emissions from different types of thermokarst lakes in Central Yakutia (Eastern Siberia)

International audience In the ice‐rich permafrost area of Central Yakutia (Eastern Siberia, Russia), climate warming and other natural and anthropogenic disturbances have caused permafrost degradation and soil subsidence, resulting in the formation of numerous thermokarst (thaw) lakes. These lakes a...

Full description

Bibliographic Details
Published in:Limnology and Oceanography
Main Authors: Hughes-Allen, Lara, Bouchard, Frédéric, Laurion, Isabelle, Séjourné, Antoine, Marlin, Christelle, Hatté, Christine, Costard, F., Fedorov, Alexander, Desyatkin, Alexey
Other Authors: Géosciences Paris Saclay (GEOPS), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Université Laval Québec (ULaval), Laboratoire des Sciences du Climat et de l'Environnement Gif-sur-Yvette (LSCE), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Géochrononologie Traceurs Archéométrie (GEOTRAC), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Melnikov Permafrost Institute, Siberian Branch of the Russian Academy of Sciences (SB RAS), ANR-17-MPGA-0014,PEGS,PErmafrost and Greenhouse gas dynamics in Siberia(2017)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2021
Subjects:
Ice
Online Access:https://hal.science/hal-03086290
https://hal.science/hal-03086290/document
https://hal.science/hal-03086290/file/LNO11665_proof_FB%20%281%29.pdf
https://doi.org/10.1002/lno.11665
Description
Summary:International audience In the ice‐rich permafrost area of Central Yakutia (Eastern Siberia, Russia), climate warming and other natural and anthropogenic disturbances have caused permafrost degradation and soil subsidence, resulting in the formation of numerous thermokarst (thaw) lakes. These lakes are hotspots of greenhouse gas emissions, but with substantial spatial and temporal heterogeneity across the Arctic. We measured dissolved CO2 and CH4 concentrations in thermokarst lakes of Central Yakutia and their seasonal patterns over a yearly cycle. Lakes formed over the Holocene (alas lakes) are compared to lakes that developed over the last decades. The results show striking differences in dissolved greenhouse gases (up to two orders of magnitude) between lake types and seasons. Shallow lakes located in hydrologically closed alas depressions acted as CO2 sinks and strong sources of diffusive CH4 during some seasons (ebullition was not assessed). Recent thermokarst lakes were moderate to extremely high sources of diffusive CO2 and CH4, with considerable accumulation of greenhouse gas under the ice cover (winter) or in the deepest water layers (summer), highlighting the need to include spring and autumn as critical periods for integrated assessments. The water column was stratified in winter (all lake types) and especially in summer (recent thermokarst lakes), generating anoxia in bottom waters and favoring CH4 production and storage, particularly in the most organic‐rich lakes. The diffusive fluxes measured from thermokarst lakes of this typical taiga alas landscape of Central Yakutia are among the highest presented across Arctic and subarctic regions