id ftuniversailles:oai:HAL:hal-01215083v1
record_format openpolar
spelling ftuniversailles:oai:HAL:hal-01215083v1 2024-05-19T07:42:49+00:00 Arc Spaces and Rogers-Ramanujan Identities Bruschek, Clemens Mourtada, Hussein Schepers, Jan University of Vienna Vienna Laboratoire de Mathématiques de Versailles (LMV) Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS) Catholic University of Leuven = Katholieke Universiteit Leuven (KU Leuven) Bousquet-Mélou Mireille and Wachs Michelle and Hultman Axel Reykjavik, Iceland 2011 https://inria.hal.science/hal-01215083 https://inria.hal.science/hal-01215083/document https://inria.hal.science/hal-01215083/file/dmAO0120.pdf https://doi.org/10.46298/dmtcs.2904 en eng HAL CCSD Discrete Mathematics and Theoretical Computer Science DMTCS info:eu-repo/semantics/altIdentifier/doi/10.46298/dmtcs.2904 hal-01215083 https://inria.hal.science/hal-01215083 https://inria.hal.science/hal-01215083/document https://inria.hal.science/hal-01215083/file/dmAO0120.pdf doi:10.46298/dmtcs.2904 info:eu-repo/semantics/OpenAccess ISSN: 1462-7264 EISSN: 1365-8050 Discrete Mathematics and Theoretical Computer Science Discrete Mathematics and Theoretical Computer Science (DMTCS) 23rd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2011) https://inria.hal.science/hal-01215083 23rd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2011), 2011, Reykjavik, Iceland. pp.211-220, ⟨10.46298/dmtcs.2904⟩ formal power series Hilbert-Poincaré series partitions Rogers-Ramanujan Identities arc spaces infinite dimensional Gröbner basis [MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO] [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM] info:eu-repo/semantics/conferenceObject Conference papers 2011 ftuniversailles https://doi.org/10.46298/dmtcs.2904 2024-05-02T00:03:51Z International audience Arc spaces have been introduced in algebraic geometry as a tool to study singularities but they show strong connections with combinatorics as well. Exploiting these relations we obtain a new approach to the classical Rogers-Ramanujan Identities. The linking object is the Hilbert-Poincaré series of the arc space over a point of the base variety. In the case of the double point this is precisely the generating series for the integer partitions without equal or consecutive parts. Les espaces des arcs ont été introduit pour étudier les singularités, mais ils ont aussi un lien fort avec la combinatoire. Ce lien permet une nouvelle approche vers les identités de Rogers-Ramanujan. L'objet permettant cette approche est la série de Hilbert-Poincaré de l'algèbre des arcs centrés en un point de la variété de base. Dans le cas où cette variété est le point double, cette série est la série génératrice des partitions d'un nombre entier sans parties égales ou consécutives. Conference Object Iceland Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQ Discrete Mathematics & Theoretical Computer Science DMTCS Proceeding Proceedings
institution Open Polar
collection Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQ
op_collection_id ftuniversailles
language English
topic formal power series
Hilbert-Poincaré series
partitions
Rogers-Ramanujan Identities
arc spaces
infinite dimensional Gröbner basis
[MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO]
[INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM]
spellingShingle formal power series
Hilbert-Poincaré series
partitions
Rogers-Ramanujan Identities
arc spaces
infinite dimensional Gröbner basis
[MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO]
[INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM]
Bruschek, Clemens
Mourtada, Hussein
Schepers, Jan
Arc Spaces and Rogers-Ramanujan Identities
topic_facet formal power series
Hilbert-Poincaré series
partitions
Rogers-Ramanujan Identities
arc spaces
infinite dimensional Gröbner basis
[MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO]
[INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM]
description International audience Arc spaces have been introduced in algebraic geometry as a tool to study singularities but they show strong connections with combinatorics as well. Exploiting these relations we obtain a new approach to the classical Rogers-Ramanujan Identities. The linking object is the Hilbert-Poincaré series of the arc space over a point of the base variety. In the case of the double point this is precisely the generating series for the integer partitions without equal or consecutive parts. Les espaces des arcs ont été introduit pour étudier les singularités, mais ils ont aussi un lien fort avec la combinatoire. Ce lien permet une nouvelle approche vers les identités de Rogers-Ramanujan. L'objet permettant cette approche est la série de Hilbert-Poincaré de l'algèbre des arcs centrés en un point de la variété de base. Dans le cas où cette variété est le point double, cette série est la série génératrice des partitions d'un nombre entier sans parties égales ou consécutives.
author2 University of Vienna Vienna
Laboratoire de Mathématiques de Versailles (LMV)
Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
Catholic University of Leuven = Katholieke Universiteit Leuven (KU Leuven)
Bousquet-Mélou
Mireille and Wachs
Michelle and Hultman
Axel
format Conference Object
author Bruschek, Clemens
Mourtada, Hussein
Schepers, Jan
author_facet Bruschek, Clemens
Mourtada, Hussein
Schepers, Jan
author_sort Bruschek, Clemens
title Arc Spaces and Rogers-Ramanujan Identities
title_short Arc Spaces and Rogers-Ramanujan Identities
title_full Arc Spaces and Rogers-Ramanujan Identities
title_fullStr Arc Spaces and Rogers-Ramanujan Identities
title_full_unstemmed Arc Spaces and Rogers-Ramanujan Identities
title_sort arc spaces and rogers-ramanujan identities
publisher HAL CCSD
publishDate 2011
url https://inria.hal.science/hal-01215083
https://inria.hal.science/hal-01215083/document
https://inria.hal.science/hal-01215083/file/dmAO0120.pdf
https://doi.org/10.46298/dmtcs.2904
op_coverage Reykjavik, Iceland
genre Iceland
genre_facet Iceland
op_source ISSN: 1462-7264
EISSN: 1365-8050
Discrete Mathematics and Theoretical Computer Science
Discrete Mathematics and Theoretical Computer Science (DMTCS)
23rd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2011)
https://inria.hal.science/hal-01215083
23rd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2011), 2011, Reykjavik, Iceland. pp.211-220, ⟨10.46298/dmtcs.2904⟩
op_relation info:eu-repo/semantics/altIdentifier/doi/10.46298/dmtcs.2904
hal-01215083
https://inria.hal.science/hal-01215083
https://inria.hal.science/hal-01215083/document
https://inria.hal.science/hal-01215083/file/dmAO0120.pdf
doi:10.46298/dmtcs.2904
op_rights info:eu-repo/semantics/OpenAccess
op_doi https://doi.org/10.46298/dmtcs.2904
container_title Discrete Mathematics & Theoretical Computer Science
container_volume DMTCS Proceeding
container_issue Proceedings
_version_ 1799482519348838400