A new multi-gas constrained model of trace gas non-homogeneous transport in firn: evaluation and behavior at eleven polar sites

International audience Insoluble trace gases are trapped in polar ice at the firn-ice transition, at approximately 50 to 100 m below the surface, depending primarily on the site temperature and snow accumulation. Models of trace gas transport in polar firn are used to relate firn air and ice core re...

Full description

Bibliographic Details
Published in:Atmospheric Chemistry and Physics
Main Authors: Witrant, Emmanuel, Martinerie, Patricia, Hogan, C., Laube, J., Kawamura, K., Capron, E., Montzka, S. A., Dlugokencky, E. J., Etheridge, D., Blunier, T., Sturges, W.
Other Authors: GIPSA - Systèmes linéaires et robustesse (GIPSA-SLR), Département Automatique (GIPSA-DA), Grenoble Images Parole Signal Automatique (GIPSA-lab), Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Stendhal - Grenoble 3-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Stendhal - Grenoble 3-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Grenoble Images Parole Signal Automatique (GIPSA-lab), Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Stendhal - Grenoble 3-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Stendhal - Grenoble 3-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS), Laboratoire de glaciologie et géophysique de l'environnement (LGGE), Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), School of Environmental Sciences Norwich, University of East Anglia Norwich (UEA), National Institute of Polar Research Tokyo (NiPR), Laboratoire des Sciences du Climat et de l'Environnement Gif-sur-Yvette (LSCE), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), British Antarctic Survey (BAS), Natural Environment Research Council (NERC), NOAA Earth System Research Laboratory (ESRL), National Oceanic and Atmospheric Administration (NOAA), Centre for Australian Weather and Climate Research (CAWCR), Centre for Ice and Climate Copenhagen, Niels Bohr Institute Copenhagen (NBI), Faculty of Science Copenhagen, University of Copenhagen = Københavns Universitet (UCPH)-University of Copenhagen = Københavns Universitet (UCPH)-Faculty of Science Copenhagen, University of Copenhagen = Københavns Universitet (UCPH)-University of Copenhagen = Københavns Universitet (UCPH)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2012
Subjects:
Online Access:https://hal.science/hal-00822372
https://hal.science/hal-00822372/document
https://hal.science/hal-00822372/file/acp-12-11465-2012.pdf
https://doi.org/10.5194/acp-12-11465-2012
id ftuniversailles:oai:HAL:hal-00822372v1
record_format openpolar
institution Open Polar
collection Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQ
op_collection_id ftuniversailles
language English
topic [SDU.OCEAN]Sciences of the Universe [physics]/Ocean
Atmosphere
[SDU.STU.GL]Sciences of the Universe [physics]/Earth Sciences/Glaciology
spellingShingle [SDU.OCEAN]Sciences of the Universe [physics]/Ocean
Atmosphere
[SDU.STU.GL]Sciences of the Universe [physics]/Earth Sciences/Glaciology
Witrant, Emmanuel
Martinerie, Patricia
Hogan, C.
Laube, J.
Kawamura, K.
Capron, E.
Montzka, S. A.
Dlugokencky, E. J.
Etheridge, D.
Blunier, T.
Sturges, W.
A new multi-gas constrained model of trace gas non-homogeneous transport in firn: evaluation and behavior at eleven polar sites
topic_facet [SDU.OCEAN]Sciences of the Universe [physics]/Ocean
Atmosphere
[SDU.STU.GL]Sciences of the Universe [physics]/Earth Sciences/Glaciology
description International audience Insoluble trace gases are trapped in polar ice at the firn-ice transition, at approximately 50 to 100 m below the surface, depending primarily on the site temperature and snow accumulation. Models of trace gas transport in polar firn are used to relate firn air and ice core records of trace gases to their atmospheric history. We propose a new model based on the following contributions. First, the firn air transport model is revised in a poromechanics framework with emphasis on the non-homogeneous properties and the treatment of gravitational settling. We then derive a nonlinear least square multi-gas optimisation scheme to calculate the effective firn diffusivity (automatic diffusivity tuning). The improvements gained by the multi-gas approach are investigated (up to ten gases for a single site are included in the optimisation process). We apply the model to four Arctic (Devon Island, NEEM, North GRIP, Summit) and seven Antarctic (DE08, Berkner Island, Siple Dome, Dronning Maud Land, South Pole, Dome C, Vostok) sites and calculate their respective depth-dependent diffusivity profiles. Among these different sites, a relationship is inferred between the snow accumulation rate and an increasing thickness of the lock-in zone defined from the isotopic composition of molecular nitrogen in firn air (denoted δ15N). It is associated with a reduced diffusivity value and an increased ratio of advective to diffusive flux in deep firn, which is particularly important at high accumulation rate sites. This has implications for the understanding of δ15N of N2 records in ice cores, in relation with past variations of the snow accumulation rate. As the snow accumulation rate is clearly a primary control on the thickness of the lock-in zone, our new approach that allows for the estimation of the lock-in zone width as a function of accumulation may lead to a better constraint on the age difference between the ice and entrapped gases.
author2 GIPSA - Systèmes linéaires et robustesse (GIPSA-SLR)
Département Automatique (GIPSA-DA)
Grenoble Images Parole Signal Automatique (GIPSA-lab)
Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Stendhal - Grenoble 3-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Stendhal - Grenoble 3-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Grenoble Images Parole Signal Automatique (GIPSA-lab)
Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Stendhal - Grenoble 3-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Stendhal - Grenoble 3-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)
Laboratoire de glaciologie et géophysique de l'environnement (LGGE)
Observatoire des Sciences de l'Univers de Grenoble (OSUG)
Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)
School of Environmental Sciences Norwich
University of East Anglia Norwich (UEA)
National Institute of Polar Research Tokyo (NiPR)
Laboratoire des Sciences du Climat et de l'Environnement Gif-sur-Yvette (LSCE)
Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Direction de Recherche Fondamentale (CEA) (DRF (CEA))
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)
British Antarctic Survey (BAS)
Natural Environment Research Council (NERC)
NOAA Earth System Research Laboratory (ESRL)
National Oceanic and Atmospheric Administration (NOAA)
Centre for Australian Weather and Climate Research (CAWCR)
Centre for Ice and Climate Copenhagen
Niels Bohr Institute Copenhagen (NBI)
Faculty of Science Copenhagen
University of Copenhagen = Københavns Universitet (UCPH)-University of Copenhagen = Københavns Universitet (UCPH)-Faculty of Science Copenhagen
University of Copenhagen = Københavns Universitet (UCPH)-University of Copenhagen = Københavns Universitet (UCPH)
format Article in Journal/Newspaper
author Witrant, Emmanuel
Martinerie, Patricia
Hogan, C.
Laube, J.
Kawamura, K.
Capron, E.
Montzka, S. A.
Dlugokencky, E. J.
Etheridge, D.
Blunier, T.
Sturges, W.
author_facet Witrant, Emmanuel
Martinerie, Patricia
Hogan, C.
Laube, J.
Kawamura, K.
Capron, E.
Montzka, S. A.
Dlugokencky, E. J.
Etheridge, D.
Blunier, T.
Sturges, W.
author_sort Witrant, Emmanuel
title A new multi-gas constrained model of trace gas non-homogeneous transport in firn: evaluation and behavior at eleven polar sites
title_short A new multi-gas constrained model of trace gas non-homogeneous transport in firn: evaluation and behavior at eleven polar sites
title_full A new multi-gas constrained model of trace gas non-homogeneous transport in firn: evaluation and behavior at eleven polar sites
title_fullStr A new multi-gas constrained model of trace gas non-homogeneous transport in firn: evaluation and behavior at eleven polar sites
title_full_unstemmed A new multi-gas constrained model of trace gas non-homogeneous transport in firn: evaluation and behavior at eleven polar sites
title_sort new multi-gas constrained model of trace gas non-homogeneous transport in firn: evaluation and behavior at eleven polar sites
publisher HAL CCSD
publishDate 2012
url https://hal.science/hal-00822372
https://hal.science/hal-00822372/document
https://hal.science/hal-00822372/file/acp-12-11465-2012.pdf
https://doi.org/10.5194/acp-12-11465-2012
genre Antarc*
Antarctic
Berkner Island
Devon Island
Dronning Maud Land
ice core
South pole
South pole
genre_facet Antarc*
Antarctic
Berkner Island
Devon Island
Dronning Maud Land
ice core
South pole
South pole
op_source ISSN: 1680-7316
EISSN: 1680-7324
Atmospheric Chemistry and Physics
https://hal.science/hal-00822372
Atmospheric Chemistry and Physics, 2012, 12 (3), pp.11465-11483. ⟨10.5194/acp-12-11465-2012⟩
op_relation info:eu-repo/semantics/altIdentifier/doi/10.5194/acp-12-11465-2012
hal-00822372
https://hal.science/hal-00822372
https://hal.science/hal-00822372/document
https://hal.science/hal-00822372/file/acp-12-11465-2012.pdf
doi:10.5194/acp-12-11465-2012
op_rights info:eu-repo/semantics/OpenAccess
op_doi https://doi.org/10.5194/acp-12-11465-2012
container_title Atmospheric Chemistry and Physics
container_volume 12
container_issue 23
container_start_page 11465
op_container_end_page 11483
_version_ 1796934608920510464
spelling ftuniversailles:oai:HAL:hal-00822372v1 2024-04-21T07:51:09+00:00 A new multi-gas constrained model of trace gas non-homogeneous transport in firn: evaluation and behavior at eleven polar sites Witrant, Emmanuel Martinerie, Patricia Hogan, C. Laube, J. Kawamura, K. Capron, E. Montzka, S. A. Dlugokencky, E. J. Etheridge, D. Blunier, T. Sturges, W. GIPSA - Systèmes linéaires et robustesse (GIPSA-SLR) Département Automatique (GIPSA-DA) Grenoble Images Parole Signal Automatique (GIPSA-lab) Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Stendhal - Grenoble 3-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Stendhal - Grenoble 3-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Grenoble Images Parole Signal Automatique (GIPSA-lab) Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Stendhal - Grenoble 3-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Stendhal - Grenoble 3-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS) Laboratoire de glaciologie et géophysique de l'environnement (LGGE) Observatoire des Sciences de l'Univers de Grenoble (OSUG) Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS) School of Environmental Sciences Norwich University of East Anglia Norwich (UEA) National Institute of Polar Research Tokyo (NiPR) Laboratoire des Sciences du Climat et de l'Environnement Gif-sur-Yvette (LSCE) Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)) Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA) British Antarctic Survey (BAS) Natural Environment Research Council (NERC) NOAA Earth System Research Laboratory (ESRL) National Oceanic and Atmospheric Administration (NOAA) Centre for Australian Weather and Climate Research (CAWCR) Centre for Ice and Climate Copenhagen Niels Bohr Institute Copenhagen (NBI) Faculty of Science Copenhagen University of Copenhagen = Københavns Universitet (UCPH)-University of Copenhagen = Københavns Universitet (UCPH)-Faculty of Science Copenhagen University of Copenhagen = Københavns Universitet (UCPH)-University of Copenhagen = Københavns Universitet (UCPH) 2012-12-04 https://hal.science/hal-00822372 https://hal.science/hal-00822372/document https://hal.science/hal-00822372/file/acp-12-11465-2012.pdf https://doi.org/10.5194/acp-12-11465-2012 en eng HAL CCSD European Geosciences Union info:eu-repo/semantics/altIdentifier/doi/10.5194/acp-12-11465-2012 hal-00822372 https://hal.science/hal-00822372 https://hal.science/hal-00822372/document https://hal.science/hal-00822372/file/acp-12-11465-2012.pdf doi:10.5194/acp-12-11465-2012 info:eu-repo/semantics/OpenAccess ISSN: 1680-7316 EISSN: 1680-7324 Atmospheric Chemistry and Physics https://hal.science/hal-00822372 Atmospheric Chemistry and Physics, 2012, 12 (3), pp.11465-11483. ⟨10.5194/acp-12-11465-2012⟩ [SDU.OCEAN]Sciences of the Universe [physics]/Ocean Atmosphere [SDU.STU.GL]Sciences of the Universe [physics]/Earth Sciences/Glaciology info:eu-repo/semantics/article Journal articles 2012 ftuniversailles https://doi.org/10.5194/acp-12-11465-2012 2024-04-10T23:59:27Z International audience Insoluble trace gases are trapped in polar ice at the firn-ice transition, at approximately 50 to 100 m below the surface, depending primarily on the site temperature and snow accumulation. Models of trace gas transport in polar firn are used to relate firn air and ice core records of trace gases to their atmospheric history. We propose a new model based on the following contributions. First, the firn air transport model is revised in a poromechanics framework with emphasis on the non-homogeneous properties and the treatment of gravitational settling. We then derive a nonlinear least square multi-gas optimisation scheme to calculate the effective firn diffusivity (automatic diffusivity tuning). The improvements gained by the multi-gas approach are investigated (up to ten gases for a single site are included in the optimisation process). We apply the model to four Arctic (Devon Island, NEEM, North GRIP, Summit) and seven Antarctic (DE08, Berkner Island, Siple Dome, Dronning Maud Land, South Pole, Dome C, Vostok) sites and calculate their respective depth-dependent diffusivity profiles. Among these different sites, a relationship is inferred between the snow accumulation rate and an increasing thickness of the lock-in zone defined from the isotopic composition of molecular nitrogen in firn air (denoted δ15N). It is associated with a reduced diffusivity value and an increased ratio of advective to diffusive flux in deep firn, which is particularly important at high accumulation rate sites. This has implications for the understanding of δ15N of N2 records in ice cores, in relation with past variations of the snow accumulation rate. As the snow accumulation rate is clearly a primary control on the thickness of the lock-in zone, our new approach that allows for the estimation of the lock-in zone width as a function of accumulation may lead to a better constraint on the age difference between the ice and entrapped gases. Article in Journal/Newspaper Antarc* Antarctic Berkner Island Devon Island Dronning Maud Land ice core South pole South pole Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQ Atmospheric Chemistry and Physics 12 23 11465 11483