The observed evolution of oceanic pCO 2 and its drivers over the last two decades
International audience We use a database of more than 4.4 million observations of ocean pCO 2 to investigate oceanic pCO 2 growth rates. We use pCO 2 measurements, with corresponding sea surface temperature and salinity measurements, to reconstruct alkalinity and dissolved inorganic carbon to unders...
Published in: | Global Biogeochemical Cycles |
---|---|
Main Authors: | , , , , , , , , |
Other Authors: | , , , , , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
HAL CCSD
2012
|
Subjects: | |
Online Access: | https://hal.science/hal-00753350 https://hal.science/hal-00753350/document https://hal.science/hal-00753350/file/2011GB004095.pdf https://doi.org/10.1029/2011GB004095 |
id |
ftuniversailles:oai:HAL:hal-00753350v1 |
---|---|
record_format |
openpolar |
institution |
Open Polar |
collection |
Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQ |
op_collection_id |
ftuniversailles |
language |
English |
topic |
[SDU.STU.GP]Sciences of the Universe [physics]/Earth Sciences/Geophysics [physics.geo-ph] [PHYS.PHYS.PHYS-GEO-PH]Physics [physics]/Physics [physics]/Geophysics [physics.geo-ph] [SDE.MCG]Environmental Sciences/Global Changes |
spellingShingle |
[SDU.STU.GP]Sciences of the Universe [physics]/Earth Sciences/Geophysics [physics.geo-ph] [PHYS.PHYS.PHYS-GEO-PH]Physics [physics]/Physics [physics]/Geophysics [physics.geo-ph] [SDE.MCG]Environmental Sciences/Global Changes Lenton, Andrew Metzl, Nicolas Takahashi, Taro Kuchinke, Mareva Matear, Richard J. Roy, Tilla Sutherland, Stewart C. Sweeney, Colm Tilbrook, Bronte The observed evolution of oceanic pCO 2 and its drivers over the last two decades |
topic_facet |
[SDU.STU.GP]Sciences of the Universe [physics]/Earth Sciences/Geophysics [physics.geo-ph] [PHYS.PHYS.PHYS-GEO-PH]Physics [physics]/Physics [physics]/Geophysics [physics.geo-ph] [SDE.MCG]Environmental Sciences/Global Changes |
description |
International audience We use a database of more than 4.4 million observations of ocean pCO 2 to investigate oceanic pCO 2 growth rates. We use pCO 2 measurements, with corresponding sea surface temperature and salinity measurements, to reconstruct alkalinity and dissolved inorganic carbon to understand what is driving these growth rates in different ocean regions. If the oceanic pCO 2 growth rate is faster (slower) than the atmospheric CO 2 growth rate, the region can be interpreted as having a decreasing (increasing) atmospheric CO 2 uptake. Only the Western subpolar and subtropical North Pacific, and the Southern Ocean are found to have sufficient spatial and temporal observations to calculate the growth rates of oceanic pCO 2 in different seasons. Based on these regions, we find the strength of the ocean carbon sink has declined over the last two decades due to a combination of regional drivers (physical and biological). In the subpolar North Pacific reduced atmospheric CO 2 uptake in the summer is associated with changes in the biological production, while in the subtropical North Pacific enhanced uptake in winter is associated with enhanced biological production. In the Indian and Pacific sectors of the Southern Ocean a reduced winter atmospheric CO 2 uptake is associated with a positive SAM response. Conversely in the more stratified Atlantic Ocean sector enhanced summer uptake is associated with increased biological production and reduced vertical supply. We are not able to separate climate variability and change as the calculated growth rates are at the limit of detection and are associated with large uncertainties. Ongoing sustained observations of global oceanic pCO 2 and its drivers, including dissolved inorganic carbon and alkalinity, are key to detecting and understanding how the ocean carbon sink will evolve in future and what processes are driving this change. |
author2 |
Couplage physique-biogéochimie-carbone (PHYBIOCAR) Laboratoire d'Océanographie et du Climat : Expérimentations et Approches Numériques (LOCEAN) Muséum national d'Histoire naturelle (MNHN)-Institut de Recherche pour le Développement (IRD)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut Pierre-Simon-Laplace (IPSL (FR_636)) École normale supérieure - Paris (ENS-PSL) Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-École polytechnique (X)-Centre National d'Études Spatiales Toulouse (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS-PSL) Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-École polytechnique (X)-Centre National d'Études Spatiales Toulouse (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Muséum national d'Histoire naturelle (MNHN)-Institut de Recherche pour le Développement (IRD)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut Pierre-Simon-Laplace (IPSL (FR_636)) Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-École polytechnique (X)-Centre National d'Études Spatiales Toulouse (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS) |
format |
Article in Journal/Newspaper |
author |
Lenton, Andrew Metzl, Nicolas Takahashi, Taro Kuchinke, Mareva Matear, Richard J. Roy, Tilla Sutherland, Stewart C. Sweeney, Colm Tilbrook, Bronte |
author_facet |
Lenton, Andrew Metzl, Nicolas Takahashi, Taro Kuchinke, Mareva Matear, Richard J. Roy, Tilla Sutherland, Stewart C. Sweeney, Colm Tilbrook, Bronte |
author_sort |
Lenton, Andrew |
title |
The observed evolution of oceanic pCO 2 and its drivers over the last two decades |
title_short |
The observed evolution of oceanic pCO 2 and its drivers over the last two decades |
title_full |
The observed evolution of oceanic pCO 2 and its drivers over the last two decades |
title_fullStr |
The observed evolution of oceanic pCO 2 and its drivers over the last two decades |
title_full_unstemmed |
The observed evolution of oceanic pCO 2 and its drivers over the last two decades |
title_sort |
observed evolution of oceanic pco 2 and its drivers over the last two decades |
publisher |
HAL CCSD |
publishDate |
2012 |
url |
https://hal.science/hal-00753350 https://hal.science/hal-00753350/document https://hal.science/hal-00753350/file/2011GB004095.pdf https://doi.org/10.1029/2011GB004095 |
genre |
Southern Ocean |
genre_facet |
Southern Ocean |
op_source |
ISSN: 0886-6236 EISSN: 1944-8224 Global Biogeochemical Cycles https://hal.science/hal-00753350 Global Biogeochemical Cycles, 2012, 26, pp.GB2021. ⟨10.1029/2011GB004095⟩ |
op_relation |
info:eu-repo/semantics/altIdentifier/doi/10.1029/2011GB004095 hal-00753350 https://hal.science/hal-00753350 https://hal.science/hal-00753350/document https://hal.science/hal-00753350/file/2011GB004095.pdf BIBCODE: 2012GBioC.26B2021L doi:10.1029/2011GB004095 WOS: 000304263400001 |
op_rights |
http://hal.archives-ouvertes.fr/licences/copyright/ info:eu-repo/semantics/OpenAccess |
op_doi |
https://doi.org/10.1029/2011GB004095 |
container_title |
Global Biogeochemical Cycles |
container_volume |
26 |
container_issue |
2 |
container_start_page |
n/a |
op_container_end_page |
n/a |
_version_ |
1799467313430265856 |
spelling |
ftuniversailles:oai:HAL:hal-00753350v1 2024-05-19T07:48:55+00:00 The observed evolution of oceanic pCO 2 and its drivers over the last two decades Lenton, Andrew Metzl, Nicolas Takahashi, Taro Kuchinke, Mareva Matear, Richard J. Roy, Tilla Sutherland, Stewart C. Sweeney, Colm Tilbrook, Bronte Couplage physique-biogéochimie-carbone (PHYBIOCAR) Laboratoire d'Océanographie et du Climat : Expérimentations et Approches Numériques (LOCEAN) Muséum national d'Histoire naturelle (MNHN)-Institut de Recherche pour le Développement (IRD)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut Pierre-Simon-Laplace (IPSL (FR_636)) École normale supérieure - Paris (ENS-PSL) Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-École polytechnique (X)-Centre National d'Études Spatiales Toulouse (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS-PSL) Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-École polytechnique (X)-Centre National d'Études Spatiales Toulouse (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Muséum national d'Histoire naturelle (MNHN)-Institut de Recherche pour le Développement (IRD)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut Pierre-Simon-Laplace (IPSL (FR_636)) Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-École polytechnique (X)-Centre National d'Études Spatiales Toulouse (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS) 2012-05 https://hal.science/hal-00753350 https://hal.science/hal-00753350/document https://hal.science/hal-00753350/file/2011GB004095.pdf https://doi.org/10.1029/2011GB004095 en eng HAL CCSD American Geophysical Union info:eu-repo/semantics/altIdentifier/doi/10.1029/2011GB004095 hal-00753350 https://hal.science/hal-00753350 https://hal.science/hal-00753350/document https://hal.science/hal-00753350/file/2011GB004095.pdf BIBCODE: 2012GBioC.26B2021L doi:10.1029/2011GB004095 WOS: 000304263400001 http://hal.archives-ouvertes.fr/licences/copyright/ info:eu-repo/semantics/OpenAccess ISSN: 0886-6236 EISSN: 1944-8224 Global Biogeochemical Cycles https://hal.science/hal-00753350 Global Biogeochemical Cycles, 2012, 26, pp.GB2021. ⟨10.1029/2011GB004095⟩ [SDU.STU.GP]Sciences of the Universe [physics]/Earth Sciences/Geophysics [physics.geo-ph] [PHYS.PHYS.PHYS-GEO-PH]Physics [physics]/Physics [physics]/Geophysics [physics.geo-ph] [SDE.MCG]Environmental Sciences/Global Changes info:eu-repo/semantics/article Journal articles 2012 ftuniversailles https://doi.org/10.1029/2011GB004095 2024-04-25T00:23:41Z International audience We use a database of more than 4.4 million observations of ocean pCO 2 to investigate oceanic pCO 2 growth rates. We use pCO 2 measurements, with corresponding sea surface temperature and salinity measurements, to reconstruct alkalinity and dissolved inorganic carbon to understand what is driving these growth rates in different ocean regions. If the oceanic pCO 2 growth rate is faster (slower) than the atmospheric CO 2 growth rate, the region can be interpreted as having a decreasing (increasing) atmospheric CO 2 uptake. Only the Western subpolar and subtropical North Pacific, and the Southern Ocean are found to have sufficient spatial and temporal observations to calculate the growth rates of oceanic pCO 2 in different seasons. Based on these regions, we find the strength of the ocean carbon sink has declined over the last two decades due to a combination of regional drivers (physical and biological). In the subpolar North Pacific reduced atmospheric CO 2 uptake in the summer is associated with changes in the biological production, while in the subtropical North Pacific enhanced uptake in winter is associated with enhanced biological production. In the Indian and Pacific sectors of the Southern Ocean a reduced winter atmospheric CO 2 uptake is associated with a positive SAM response. Conversely in the more stratified Atlantic Ocean sector enhanced summer uptake is associated with increased biological production and reduced vertical supply. We are not able to separate climate variability and change as the calculated growth rates are at the limit of detection and are associated with large uncertainties. Ongoing sustained observations of global oceanic pCO 2 and its drivers, including dissolved inorganic carbon and alkalinity, are key to detecting and understanding how the ocean carbon sink will evolve in future and what processes are driving this change. Article in Journal/Newspaper Southern Ocean Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQ Global Biogeochemical Cycles 26 2 n/a n/a |