Graph Neural Networks for low-energy event classification & reconstruction in IceCube

AbstractIceCube, a cubic-kilometer array of optical sensors built to detect atmospheric and astrophysical neutrinos between 1 GeV and 1 PeV, is deployed 1.45 km to 2.45 km below the surface of the ice sheet at the South Pole. The classification and reconstruction of events from the in-ice detectors...

Full description

Bibliographic Details
Published in:Journal of Instrumentation
Main Authors: Abbasi, R., Ackermann, M., Adams, J., Aggarwal, N., Aguilar, J.A., Ahlers, M., Ahrens, M., Alameddine, J.M., Alves , A.A., Amin, N.M., Andeen, K., Anderson, T., Anton, G., Argüelles, C., Ashida, Y., Athanasiadou, S., Axani, S., Bai, X., Balagopal V., A., Baricevic, M., Barwick, S.W., Basu, V., Bay, R., Beatty, J.J., Becker, K.-H., Becker Tjus, J., Beise, J., Bellenghi, C., Benda, S., BenZvi, S., Berley, D., Bernardini, E., Besson, D.Z., Binder, G., Bindig, D., Blaufuss, E., Blot, S., Bontempo, F., Book, J.Y., Borowka, J., Boscolo Meneguolo, C., Böser, S., Botner, O., Böttcher, J., Bourbeau, E., Braun, J., Brinson, B., Brostean-Kaiser, J., Burley, R.T., Busse, R.S.
Format: Article in Journal/Newspaper
Language:English
Published: 2022
Subjects:
Online Access:https://opus4.kobv.de/opus4-fau/frontdoor/index/index/docId/20819
https://nbn-resolving.org/urn:nbn:de:bvb:29-opus4-208191
https://doi.org/10.1088/1748-0221/17/11/P11003
https://opus4.kobv.de/opus4-fau/files/20819/jinst_17_11_P11003.pdf
_version_ 1821543815904755712
author Abbasi, R.
Ackermann, M.
Adams, J.
Aggarwal, N.
Aguilar, J.A.
Ahlers, M.
Ahrens, M.
Alameddine, J.M.
Alves , A.A.
Amin, N.M.
Andeen, K.
Anderson, T.
Anton, G.
Argüelles, C.
Ashida, Y.
Athanasiadou, S.
Axani, S.
Bai, X.
Balagopal V., A.
Baricevic, M.
Barwick, S.W.
Basu, V.
Bay, R.
Beatty, J.J.
Becker, K.-H.
Becker Tjus, J.
Beise, J.
Bellenghi, C.
Benda, S.
BenZvi, S.
Berley, D.
Bernardini, E.
Besson, D.Z.
Binder, G.
Bindig, D.
Blaufuss, E.
Blot, S.
Bontempo, F.
Book, J.Y.
Borowka, J.
Boscolo Meneguolo, C.
Böser, S.
Botner, O.
Böttcher, J.
Bourbeau, E.
Braun, J.
Brinson, B.
Brostean-Kaiser, J.
Burley, R.T.
Busse, R.S.
author_facet Abbasi, R.
Ackermann, M.
Adams, J.
Aggarwal, N.
Aguilar, J.A.
Ahlers, M.
Ahrens, M.
Alameddine, J.M.
Alves , A.A.
Amin, N.M.
Andeen, K.
Anderson, T.
Anton, G.
Argüelles, C.
Ashida, Y.
Athanasiadou, S.
Axani, S.
Bai, X.
Balagopal V., A.
Baricevic, M.
Barwick, S.W.
Basu, V.
Bay, R.
Beatty, J.J.
Becker, K.-H.
Becker Tjus, J.
Beise, J.
Bellenghi, C.
Benda, S.
BenZvi, S.
Berley, D.
Bernardini, E.
Besson, D.Z.
Binder, G.
Bindig, D.
Blaufuss, E.
Blot, S.
Bontempo, F.
Book, J.Y.
Borowka, J.
Boscolo Meneguolo, C.
Böser, S.
Botner, O.
Böttcher, J.
Bourbeau, E.
Braun, J.
Brinson, B.
Brostean-Kaiser, J.
Burley, R.T.
Busse, R.S.
author_sort Abbasi, R.
collection OPUS FAU - Online publication system of Friedrich-Alexander-Universität Erlangen-Nürnberg
container_issue 11
container_start_page P11003
container_title Journal of Instrumentation
container_volume 17
description AbstractIceCube, a cubic-kilometer array of optical sensors built to detect atmospheric and astrophysical neutrinos between 1 GeV and 1 PeV, is deployed 1.45 km to 2.45 km below the surface of the ice sheet at the South Pole. The classification and reconstruction of events from the in-ice detectors play a central role in the analysis of data from IceCube. Reconstructing and classifying events is a challenge due to the irregular detector geometry, inhomogeneous scattering and absorption of light in the ice and, below 100 GeV, the relatively low number of signal photons produced per event. To address this challenge, it is possible to represent IceCube events as point cloud graphs and use a Graph Neural Network (GNN) as the classification and reconstruction method. The GNN is capable of distinguishing neutrino events from cosmic-ray backgrounds, classifying different neutrino event types, and reconstructing the deposited energy, direction and interaction vertex. Based on simulation, we provide a comparison in the 1 GeV–100 GeV energy range to the current state-of-the-art maximum likelihood techniques used in current IceCube analyses, including the effects of known systematic uncertainties. For neutrino event classification, the GNN increases the signal efficiency by 18% at a fixed background rate, compared to current IceCube methods. Alternatively, the GNN offers a reduction of the background (i.e. false positive) rate by over a factor 8 (to below half a percent) at a fixed signal efficiency. For the reconstruction of energy, direction, and interaction vertex, the resolution improves by an average of 13%–20% compared to current maximum likelihood techniques in the energy range of 1 GeV–30 GeV. The GNN, when run on a GPU, is capable of processing IceCube events at a rate nearly double of the median IceCube trigger rate of 2.7 kHz, which opens the possibility of using low energy neutrinos in online searches for transient events.
format Article in Journal/Newspaper
genre Ice Sheet
South pole
genre_facet Ice Sheet
South pole
geographic South Pole
geographic_facet South Pole
id ftuniverlangen:oai:ub.uni-erlangen.de-opus:20819
institution Open Polar
language English
op_collection_id ftuniverlangen
op_doi https://doi.org/10.1088/1748-0221/17/11/P11003
op_relation https://opus4.kobv.de/opus4-fau/frontdoor/index/index/docId/20819
urn:nbn:de:bvb:29-opus4-208191
https://nbn-resolving.org/urn:nbn:de:bvb:29-opus4-208191
https://doi.org/10.1088/1748-0221/17/11/P11003
https://opus4.kobv.de/opus4-fau/files/20819/jinst_17_11_P11003.pdf
op_rights https://creativecommons.org/licenses/by/4.0/deed.de
info:eu-repo/semantics/openAccess
op_rightsnorm CC-BY
publishDate 2022
record_format openpolar
spelling ftuniverlangen:oai:ub.uni-erlangen.de-opus:20819 2025-01-16T22:27:11+00:00 Graph Neural Networks for low-energy event classification & reconstruction in IceCube Abbasi, R. Ackermann, M. Adams, J. Aggarwal, N. Aguilar, J.A. Ahlers, M. Ahrens, M. Alameddine, J.M. Alves , A.A. Amin, N.M. Andeen, K. Anderson, T. Anton, G. Argüelles, C. Ashida, Y. Athanasiadou, S. Axani, S. Bai, X. Balagopal V., A. Baricevic, M. Barwick, S.W. Basu, V. Bay, R. Beatty, J.J. Becker, K.-H. Becker Tjus, J. Beise, J. Bellenghi, C. Benda, S. BenZvi, S. Berley, D. Bernardini, E. Besson, D.Z. Binder, G. Bindig, D. Blaufuss, E. Blot, S. Bontempo, F. Book, J.Y. Borowka, J. Boscolo Meneguolo, C. Böser, S. Botner, O. Böttcher, J. Bourbeau, E. Braun, J. Brinson, B. Brostean-Kaiser, J. Burley, R.T. Busse, R.S. 2022-11-04 application/pdf https://opus4.kobv.de/opus4-fau/frontdoor/index/index/docId/20819 https://nbn-resolving.org/urn:nbn:de:bvb:29-opus4-208191 https://doi.org/10.1088/1748-0221/17/11/P11003 https://opus4.kobv.de/opus4-fau/files/20819/jinst_17_11_P11003.pdf eng eng https://opus4.kobv.de/opus4-fau/frontdoor/index/index/docId/20819 urn:nbn:de:bvb:29-opus4-208191 https://nbn-resolving.org/urn:nbn:de:bvb:29-opus4-208191 https://doi.org/10.1088/1748-0221/17/11/P11003 https://opus4.kobv.de/opus4-fau/files/20819/jinst_17_11_P11003.pdf https://creativecommons.org/licenses/by/4.0/deed.de info:eu-repo/semantics/openAccess CC-BY ddc:530 article doc-type:article 2022 ftuniverlangen https://doi.org/10.1088/1748-0221/17/11/P11003 2022-11-13T23:40:52Z AbstractIceCube, a cubic-kilometer array of optical sensors built to detect atmospheric and astrophysical neutrinos between 1 GeV and 1 PeV, is deployed 1.45 km to 2.45 km below the surface of the ice sheet at the South Pole. The classification and reconstruction of events from the in-ice detectors play a central role in the analysis of data from IceCube. Reconstructing and classifying events is a challenge due to the irregular detector geometry, inhomogeneous scattering and absorption of light in the ice and, below 100 GeV, the relatively low number of signal photons produced per event. To address this challenge, it is possible to represent IceCube events as point cloud graphs and use a Graph Neural Network (GNN) as the classification and reconstruction method. The GNN is capable of distinguishing neutrino events from cosmic-ray backgrounds, classifying different neutrino event types, and reconstructing the deposited energy, direction and interaction vertex. Based on simulation, we provide a comparison in the 1 GeV–100 GeV energy range to the current state-of-the-art maximum likelihood techniques used in current IceCube analyses, including the effects of known systematic uncertainties. For neutrino event classification, the GNN increases the signal efficiency by 18% at a fixed background rate, compared to current IceCube methods. Alternatively, the GNN offers a reduction of the background (i.e. false positive) rate by over a factor 8 (to below half a percent) at a fixed signal efficiency. For the reconstruction of energy, direction, and interaction vertex, the resolution improves by an average of 13%–20% compared to current maximum likelihood techniques in the energy range of 1 GeV–30 GeV. The GNN, when run on a GPU, is capable of processing IceCube events at a rate nearly double of the median IceCube trigger rate of 2.7 kHz, which opens the possibility of using low energy neutrinos in online searches for transient events. Article in Journal/Newspaper Ice Sheet South pole OPUS FAU - Online publication system of Friedrich-Alexander-Universität Erlangen-Nürnberg South Pole Journal of Instrumentation 17 11 P11003
spellingShingle ddc:530
Abbasi, R.
Ackermann, M.
Adams, J.
Aggarwal, N.
Aguilar, J.A.
Ahlers, M.
Ahrens, M.
Alameddine, J.M.
Alves , A.A.
Amin, N.M.
Andeen, K.
Anderson, T.
Anton, G.
Argüelles, C.
Ashida, Y.
Athanasiadou, S.
Axani, S.
Bai, X.
Balagopal V., A.
Baricevic, M.
Barwick, S.W.
Basu, V.
Bay, R.
Beatty, J.J.
Becker, K.-H.
Becker Tjus, J.
Beise, J.
Bellenghi, C.
Benda, S.
BenZvi, S.
Berley, D.
Bernardini, E.
Besson, D.Z.
Binder, G.
Bindig, D.
Blaufuss, E.
Blot, S.
Bontempo, F.
Book, J.Y.
Borowka, J.
Boscolo Meneguolo, C.
Böser, S.
Botner, O.
Böttcher, J.
Bourbeau, E.
Braun, J.
Brinson, B.
Brostean-Kaiser, J.
Burley, R.T.
Busse, R.S.
Graph Neural Networks for low-energy event classification & reconstruction in IceCube
title Graph Neural Networks for low-energy event classification & reconstruction in IceCube
title_full Graph Neural Networks for low-energy event classification & reconstruction in IceCube
title_fullStr Graph Neural Networks for low-energy event classification & reconstruction in IceCube
title_full_unstemmed Graph Neural Networks for low-energy event classification & reconstruction in IceCube
title_short Graph Neural Networks for low-energy event classification & reconstruction in IceCube
title_sort graph neural networks for low-energy event classification & reconstruction in icecube
topic ddc:530
topic_facet ddc:530
url https://opus4.kobv.de/opus4-fau/frontdoor/index/index/docId/20819
https://nbn-resolving.org/urn:nbn:de:bvb:29-opus4-208191
https://doi.org/10.1088/1748-0221/17/11/P11003
https://opus4.kobv.de/opus4-fau/files/20819/jinst_17_11_P11003.pdf