Detection of ice core particles via deep neural networks

Insoluble particles in ice cores record signatures of past climate parameters like vegetation dynamics, volcanic activity, and aridity. For some of them, the analytical detection relies on intensive bench microscopy investigation and requires dedicated sample preparation steps. Both are laborious, r...

Full description

Bibliographic Details
Published in:The Cryosphere
Main Authors: Maffezzoli, Niccolò, Cook, Eliza, van der Bilt, Willem G. M., Støren, Eivind N., Festi, Daniela, Muthreich, Florian, Seddon, Alistair W. R., Burgay, François, Baccolo, Giovanni, Mygind, Amalie R. F., Petersen, Troels, Spolaor, Andrea, Vascon, Sebastiano, Pelillo, Marcello, Ferretti, Patrizia, dos Reis, Rafael S., Simões, Jefferson C., Ronen, Yuval, Delmonte, Barbara, Viccaro, Marco, Steffensen, Jørgen Peder, Dahl-Jensen, Dorthe, Nisancioglu, Kerim H., Barbante, Carlo
Other Authors: Burgay, Françoi, Petersen, Troel
Format: Article in Journal/Newspaper
Language:English
Published: 2023
Subjects:
Online Access:https://hdl.handle.net/10278/5014741
https://doi.org/10.5194/tc-17-539-2023
_version_ 1821540388000759808
author Maffezzoli, Niccolò
Cook, Eliza
van der Bilt, Willem G. M.
Støren, Eivind N.
Festi, Daniela
Muthreich, Florian
Seddon, Alistair W. R.
Burgay, François
Baccolo, Giovanni
Mygind, Amalie R. F.
Petersen, Troels
Spolaor, Andrea
Vascon, Sebastiano
Pelillo, Marcello
Ferretti, Patrizia
dos Reis, Rafael S.
Simões, Jefferson C.
Ronen, Yuval
Delmonte, Barbara
Viccaro, Marco
Steffensen, Jørgen Peder
Dahl-Jensen, Dorthe
Nisancioglu, Kerim H.
Barbante, Carlo
author2 Maffezzoli, Niccolò
Cook, Eliza
van der Bilt, Willem G. M.
Støren, Eivind N.
Festi, Daniela
Muthreich, Florian
Seddon, Alistair W. R.
Burgay, Françoi
Baccolo, Giovanni
Mygind, Amalie R. F.
Petersen, Troel
Spolaor, Andrea
Vascon, Sebastiano
Pelillo, Marcello
Ferretti, Patrizia
dos Reis, Rafael S.
Simões, Jefferson C.
Ronen, Yuval
Delmonte, Barbara
Viccaro, Marco
Steffensen, Jørgen Peder
Dahl-Jensen, Dorthe
Nisancioglu, Kerim H.
Barbante, Carlo
author_facet Maffezzoli, Niccolò
Cook, Eliza
van der Bilt, Willem G. M.
Støren, Eivind N.
Festi, Daniela
Muthreich, Florian
Seddon, Alistair W. R.
Burgay, François
Baccolo, Giovanni
Mygind, Amalie R. F.
Petersen, Troels
Spolaor, Andrea
Vascon, Sebastiano
Pelillo, Marcello
Ferretti, Patrizia
dos Reis, Rafael S.
Simões, Jefferson C.
Ronen, Yuval
Delmonte, Barbara
Viccaro, Marco
Steffensen, Jørgen Peder
Dahl-Jensen, Dorthe
Nisancioglu, Kerim H.
Barbante, Carlo
author_sort Maffezzoli, Niccolò
collection Università Ca’ Foscari Venezia: ARCA (Archivio Istituzionale della Ricerca)
container_issue 2
container_start_page 539
container_title The Cryosphere
container_volume 17
description Insoluble particles in ice cores record signatures of past climate parameters like vegetation dynamics, volcanic activity, and aridity. For some of them, the analytical detection relies on intensive bench microscopy investigation and requires dedicated sample preparation steps. Both are laborious, require in-depth knowledge, and often restrict sampling strategies. To help overcome these limitations, we present a framework based on flow imaging microscopy coupled to a deep neural network for autonomous image classification of ice core particles. We train the network to classify seven commonly found classes, namely mineral dust, felsic and mafic (basaltic) volcanic ash grains (tephra), three species of pollen (Corylus avellana, Quercus robur, Quercus suber), and contamination particles that may be introduced onto the ice core surface during core handling operations. The trained network achieves 96.8 % classification accuracy at test time. We present the system's potential and its limitations with respect to the detection of mineral dust, pollen grains, and tephra shards, using both controlled materials and real ice core samples. The methodology requires little sample material, is non-destructive, fully reproducible, and does not require any sample preparation procedures. The presented framework can bolster research in the field by cutting down processing time, supporting human-operated microscopy, and further unlocking the paleoclimate potential of ice core records by providing the opportunity to identify an array of ice core particles. Suggestions for an improved system to be deployed within a continuous flow analysis workflow are also presented.
format Article in Journal/Newspaper
genre ice core
genre_facet ice core
id ftuniveneziairis:oai:iris.unive.it:10278/5014741
institution Open Polar
language English
op_collection_id ftuniveneziairis
op_container_end_page 565
op_doi https://doi.org/10.5194/tc-17-539-2023
op_relation info:eu-repo/semantics/altIdentifier/wos/WOS:000926305400001
volume:17
issue:2
firstpage:539
lastpage:565
numberofpages:27
journal:THE CRYOSPHERE
info:eu-repo/grantAgreement/EC/H2020/845115
https://hdl.handle.net/10278/5014741
doi:10.5194/tc-17-539-2023
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85148726704
op_rights info:eu-repo/semantics/openAccess
publishDate 2023
record_format openpolar
spelling ftuniveneziairis:oai:iris.unive.it:10278/5014741 2025-01-16T22:23:31+00:00 Detection of ice core particles via deep neural networks Maffezzoli, Niccolò Cook, Eliza van der Bilt, Willem G. M. Støren, Eivind N. Festi, Daniela Muthreich, Florian Seddon, Alistair W. R. Burgay, François Baccolo, Giovanni Mygind, Amalie R. F. Petersen, Troels Spolaor, Andrea Vascon, Sebastiano Pelillo, Marcello Ferretti, Patrizia dos Reis, Rafael S. Simões, Jefferson C. Ronen, Yuval Delmonte, Barbara Viccaro, Marco Steffensen, Jørgen Peder Dahl-Jensen, Dorthe Nisancioglu, Kerim H. Barbante, Carlo Maffezzoli, Niccolò Cook, Eliza van der Bilt, Willem G. M. Støren, Eivind N. Festi, Daniela Muthreich, Florian Seddon, Alistair W. R. Burgay, Françoi Baccolo, Giovanni Mygind, Amalie R. F. Petersen, Troel Spolaor, Andrea Vascon, Sebastiano Pelillo, Marcello Ferretti, Patrizia dos Reis, Rafael S. Simões, Jefferson C. Ronen, Yuval Delmonte, Barbara Viccaro, Marco Steffensen, Jørgen Peder Dahl-Jensen, Dorthe Nisancioglu, Kerim H. Barbante, Carlo 2023 ELETTRONICO https://hdl.handle.net/10278/5014741 https://doi.org/10.5194/tc-17-539-2023 eng eng info:eu-repo/semantics/altIdentifier/wos/WOS:000926305400001 volume:17 issue:2 firstpage:539 lastpage:565 numberofpages:27 journal:THE CRYOSPHERE info:eu-repo/grantAgreement/EC/H2020/845115 https://hdl.handle.net/10278/5014741 doi:10.5194/tc-17-539-2023 info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85148726704 info:eu-repo/semantics/openAccess Settore GEO/11 - Geofisica Applicata Settore GEO/08 - Geochimica e Vulcanologia Settore GEO/04 - Geografia Fisica e Geomorfologia info:eu-repo/semantics/article 2023 ftuniveneziairis https://doi.org/10.5194/tc-17-539-2023 2024-03-21T17:59:54Z Insoluble particles in ice cores record signatures of past climate parameters like vegetation dynamics, volcanic activity, and aridity. For some of them, the analytical detection relies on intensive bench microscopy investigation and requires dedicated sample preparation steps. Both are laborious, require in-depth knowledge, and often restrict sampling strategies. To help overcome these limitations, we present a framework based on flow imaging microscopy coupled to a deep neural network for autonomous image classification of ice core particles. We train the network to classify seven commonly found classes, namely mineral dust, felsic and mafic (basaltic) volcanic ash grains (tephra), three species of pollen (Corylus avellana, Quercus robur, Quercus suber), and contamination particles that may be introduced onto the ice core surface during core handling operations. The trained network achieves 96.8 % classification accuracy at test time. We present the system's potential and its limitations with respect to the detection of mineral dust, pollen grains, and tephra shards, using both controlled materials and real ice core samples. The methodology requires little sample material, is non-destructive, fully reproducible, and does not require any sample preparation procedures. The presented framework can bolster research in the field by cutting down processing time, supporting human-operated microscopy, and further unlocking the paleoclimate potential of ice core records by providing the opportunity to identify an array of ice core particles. Suggestions for an improved system to be deployed within a continuous flow analysis workflow are also presented. Article in Journal/Newspaper ice core Università Ca’ Foscari Venezia: ARCA (Archivio Istituzionale della Ricerca) The Cryosphere 17 2 539 565
spellingShingle Settore GEO/11 - Geofisica Applicata
Settore GEO/08 - Geochimica e Vulcanologia
Settore GEO/04 - Geografia Fisica e Geomorfologia
Maffezzoli, Niccolò
Cook, Eliza
van der Bilt, Willem G. M.
Støren, Eivind N.
Festi, Daniela
Muthreich, Florian
Seddon, Alistair W. R.
Burgay, François
Baccolo, Giovanni
Mygind, Amalie R. F.
Petersen, Troels
Spolaor, Andrea
Vascon, Sebastiano
Pelillo, Marcello
Ferretti, Patrizia
dos Reis, Rafael S.
Simões, Jefferson C.
Ronen, Yuval
Delmonte, Barbara
Viccaro, Marco
Steffensen, Jørgen Peder
Dahl-Jensen, Dorthe
Nisancioglu, Kerim H.
Barbante, Carlo
Detection of ice core particles via deep neural networks
title Detection of ice core particles via deep neural networks
title_full Detection of ice core particles via deep neural networks
title_fullStr Detection of ice core particles via deep neural networks
title_full_unstemmed Detection of ice core particles via deep neural networks
title_short Detection of ice core particles via deep neural networks
title_sort detection of ice core particles via deep neural networks
topic Settore GEO/11 - Geofisica Applicata
Settore GEO/08 - Geochimica e Vulcanologia
Settore GEO/04 - Geografia Fisica e Geomorfologia
topic_facet Settore GEO/11 - Geofisica Applicata
Settore GEO/08 - Geochimica e Vulcanologia
Settore GEO/04 - Geografia Fisica e Geomorfologia
url https://hdl.handle.net/10278/5014741
https://doi.org/10.5194/tc-17-539-2023