Detection of ice core particles via deep neural networks
Insoluble particles in ice cores record signatures of past climate parameters like vegetation dynamics, volcanic activity, and aridity. For some of them, the analytical detection relies on intensive bench microscopy investigation and requires dedicated sample preparation steps. Both are laborious, r...
Published in: | The Cryosphere |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , |
Other Authors: | , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
2023
|
Subjects: | |
Online Access: | https://hdl.handle.net/10278/5014741 https://doi.org/10.5194/tc-17-539-2023 |
_version_ | 1821540388000759808 |
---|---|
author | Maffezzoli, Niccolò Cook, Eliza van der Bilt, Willem G. M. Støren, Eivind N. Festi, Daniela Muthreich, Florian Seddon, Alistair W. R. Burgay, François Baccolo, Giovanni Mygind, Amalie R. F. Petersen, Troels Spolaor, Andrea Vascon, Sebastiano Pelillo, Marcello Ferretti, Patrizia dos Reis, Rafael S. Simões, Jefferson C. Ronen, Yuval Delmonte, Barbara Viccaro, Marco Steffensen, Jørgen Peder Dahl-Jensen, Dorthe Nisancioglu, Kerim H. Barbante, Carlo |
author2 | Maffezzoli, Niccolò Cook, Eliza van der Bilt, Willem G. M. Støren, Eivind N. Festi, Daniela Muthreich, Florian Seddon, Alistair W. R. Burgay, Françoi Baccolo, Giovanni Mygind, Amalie R. F. Petersen, Troel Spolaor, Andrea Vascon, Sebastiano Pelillo, Marcello Ferretti, Patrizia dos Reis, Rafael S. Simões, Jefferson C. Ronen, Yuval Delmonte, Barbara Viccaro, Marco Steffensen, Jørgen Peder Dahl-Jensen, Dorthe Nisancioglu, Kerim H. Barbante, Carlo |
author_facet | Maffezzoli, Niccolò Cook, Eliza van der Bilt, Willem G. M. Støren, Eivind N. Festi, Daniela Muthreich, Florian Seddon, Alistair W. R. Burgay, François Baccolo, Giovanni Mygind, Amalie R. F. Petersen, Troels Spolaor, Andrea Vascon, Sebastiano Pelillo, Marcello Ferretti, Patrizia dos Reis, Rafael S. Simões, Jefferson C. Ronen, Yuval Delmonte, Barbara Viccaro, Marco Steffensen, Jørgen Peder Dahl-Jensen, Dorthe Nisancioglu, Kerim H. Barbante, Carlo |
author_sort | Maffezzoli, Niccolò |
collection | Università Ca’ Foscari Venezia: ARCA (Archivio Istituzionale della Ricerca) |
container_issue | 2 |
container_start_page | 539 |
container_title | The Cryosphere |
container_volume | 17 |
description | Insoluble particles in ice cores record signatures of past climate parameters like vegetation dynamics, volcanic activity, and aridity. For some of them, the analytical detection relies on intensive bench microscopy investigation and requires dedicated sample preparation steps. Both are laborious, require in-depth knowledge, and often restrict sampling strategies. To help overcome these limitations, we present a framework based on flow imaging microscopy coupled to a deep neural network for autonomous image classification of ice core particles. We train the network to classify seven commonly found classes, namely mineral dust, felsic and mafic (basaltic) volcanic ash grains (tephra), three species of pollen (Corylus avellana, Quercus robur, Quercus suber), and contamination particles that may be introduced onto the ice core surface during core handling operations. The trained network achieves 96.8 % classification accuracy at test time. We present the system's potential and its limitations with respect to the detection of mineral dust, pollen grains, and tephra shards, using both controlled materials and real ice core samples. The methodology requires little sample material, is non-destructive, fully reproducible, and does not require any sample preparation procedures. The presented framework can bolster research in the field by cutting down processing time, supporting human-operated microscopy, and further unlocking the paleoclimate potential of ice core records by providing the opportunity to identify an array of ice core particles. Suggestions for an improved system to be deployed within a continuous flow analysis workflow are also presented. |
format | Article in Journal/Newspaper |
genre | ice core |
genre_facet | ice core |
id | ftuniveneziairis:oai:iris.unive.it:10278/5014741 |
institution | Open Polar |
language | English |
op_collection_id | ftuniveneziairis |
op_container_end_page | 565 |
op_doi | https://doi.org/10.5194/tc-17-539-2023 |
op_relation | info:eu-repo/semantics/altIdentifier/wos/WOS:000926305400001 volume:17 issue:2 firstpage:539 lastpage:565 numberofpages:27 journal:THE CRYOSPHERE info:eu-repo/grantAgreement/EC/H2020/845115 https://hdl.handle.net/10278/5014741 doi:10.5194/tc-17-539-2023 info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85148726704 |
op_rights | info:eu-repo/semantics/openAccess |
publishDate | 2023 |
record_format | openpolar |
spelling | ftuniveneziairis:oai:iris.unive.it:10278/5014741 2025-01-16T22:23:31+00:00 Detection of ice core particles via deep neural networks Maffezzoli, Niccolò Cook, Eliza van der Bilt, Willem G. M. Støren, Eivind N. Festi, Daniela Muthreich, Florian Seddon, Alistair W. R. Burgay, François Baccolo, Giovanni Mygind, Amalie R. F. Petersen, Troels Spolaor, Andrea Vascon, Sebastiano Pelillo, Marcello Ferretti, Patrizia dos Reis, Rafael S. Simões, Jefferson C. Ronen, Yuval Delmonte, Barbara Viccaro, Marco Steffensen, Jørgen Peder Dahl-Jensen, Dorthe Nisancioglu, Kerim H. Barbante, Carlo Maffezzoli, Niccolò Cook, Eliza van der Bilt, Willem G. M. Støren, Eivind N. Festi, Daniela Muthreich, Florian Seddon, Alistair W. R. Burgay, Françoi Baccolo, Giovanni Mygind, Amalie R. F. Petersen, Troel Spolaor, Andrea Vascon, Sebastiano Pelillo, Marcello Ferretti, Patrizia dos Reis, Rafael S. Simões, Jefferson C. Ronen, Yuval Delmonte, Barbara Viccaro, Marco Steffensen, Jørgen Peder Dahl-Jensen, Dorthe Nisancioglu, Kerim H. Barbante, Carlo 2023 ELETTRONICO https://hdl.handle.net/10278/5014741 https://doi.org/10.5194/tc-17-539-2023 eng eng info:eu-repo/semantics/altIdentifier/wos/WOS:000926305400001 volume:17 issue:2 firstpage:539 lastpage:565 numberofpages:27 journal:THE CRYOSPHERE info:eu-repo/grantAgreement/EC/H2020/845115 https://hdl.handle.net/10278/5014741 doi:10.5194/tc-17-539-2023 info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85148726704 info:eu-repo/semantics/openAccess Settore GEO/11 - Geofisica Applicata Settore GEO/08 - Geochimica e Vulcanologia Settore GEO/04 - Geografia Fisica e Geomorfologia info:eu-repo/semantics/article 2023 ftuniveneziairis https://doi.org/10.5194/tc-17-539-2023 2024-03-21T17:59:54Z Insoluble particles in ice cores record signatures of past climate parameters like vegetation dynamics, volcanic activity, and aridity. For some of them, the analytical detection relies on intensive bench microscopy investigation and requires dedicated sample preparation steps. Both are laborious, require in-depth knowledge, and often restrict sampling strategies. To help overcome these limitations, we present a framework based on flow imaging microscopy coupled to a deep neural network for autonomous image classification of ice core particles. We train the network to classify seven commonly found classes, namely mineral dust, felsic and mafic (basaltic) volcanic ash grains (tephra), three species of pollen (Corylus avellana, Quercus robur, Quercus suber), and contamination particles that may be introduced onto the ice core surface during core handling operations. The trained network achieves 96.8 % classification accuracy at test time. We present the system's potential and its limitations with respect to the detection of mineral dust, pollen grains, and tephra shards, using both controlled materials and real ice core samples. The methodology requires little sample material, is non-destructive, fully reproducible, and does not require any sample preparation procedures. The presented framework can bolster research in the field by cutting down processing time, supporting human-operated microscopy, and further unlocking the paleoclimate potential of ice core records by providing the opportunity to identify an array of ice core particles. Suggestions for an improved system to be deployed within a continuous flow analysis workflow are also presented. Article in Journal/Newspaper ice core Università Ca’ Foscari Venezia: ARCA (Archivio Istituzionale della Ricerca) The Cryosphere 17 2 539 565 |
spellingShingle | Settore GEO/11 - Geofisica Applicata Settore GEO/08 - Geochimica e Vulcanologia Settore GEO/04 - Geografia Fisica e Geomorfologia Maffezzoli, Niccolò Cook, Eliza van der Bilt, Willem G. M. Støren, Eivind N. Festi, Daniela Muthreich, Florian Seddon, Alistair W. R. Burgay, François Baccolo, Giovanni Mygind, Amalie R. F. Petersen, Troels Spolaor, Andrea Vascon, Sebastiano Pelillo, Marcello Ferretti, Patrizia dos Reis, Rafael S. Simões, Jefferson C. Ronen, Yuval Delmonte, Barbara Viccaro, Marco Steffensen, Jørgen Peder Dahl-Jensen, Dorthe Nisancioglu, Kerim H. Barbante, Carlo Detection of ice core particles via deep neural networks |
title | Detection of ice core particles via deep neural networks |
title_full | Detection of ice core particles via deep neural networks |
title_fullStr | Detection of ice core particles via deep neural networks |
title_full_unstemmed | Detection of ice core particles via deep neural networks |
title_short | Detection of ice core particles via deep neural networks |
title_sort | detection of ice core particles via deep neural networks |
topic | Settore GEO/11 - Geofisica Applicata Settore GEO/08 - Geochimica e Vulcanologia Settore GEO/04 - Geografia Fisica e Geomorfologia |
topic_facet | Settore GEO/11 - Geofisica Applicata Settore GEO/08 - Geochimica e Vulcanologia Settore GEO/04 - Geografia Fisica e Geomorfologia |
url | https://hdl.handle.net/10278/5014741 https://doi.org/10.5194/tc-17-539-2023 |