Comparative carbon cycle dynamics of the present and last interglacial

Changes in temperature and carbon dioxide during glacial cycles recorded in Antarctic ice cores are tightly coupled. However, this relationship does not hold for interglacials. While climate cooled towards the end of both the last (Eemian) and present (Holocene) interglacials, CO2 remained stable du...

Full description

Bibliographic Details
Published in:Quaternary Science Reviews
Main Authors: Brovkin V., Brucher T., Kleinen T., Zaehle S., Joos F., Roth R., Spahni R., Schmitt J., Fischer H., Leuenberger M., Stone E. J., Ridgwell A., Chappellaz J., Kehrwald N., Barbante C., Blunier T., Dahl Jensen D.
Other Authors: Brovkin, V., Brucher, T., Kleinen, T., Zaehle, S., Joos, F., Roth, R., Spahni, R., Schmitt, J., Fischer, H., Leuenberger, M., Stone, E. J., Ridgwell, A., Chappellaz, J., Kehrwald, N., Barbante, C., Blunier, T., Dahl Jensen, D.
Format: Article in Journal/Newspaper
Language:English
Published: 2016
Subjects:
Ice
Online Access:http://hdl.handle.net/10278/3717201
https://doi.org/10.1016/j.quascirev.2016.01.028
http://www.journals.elsevier.com/quaternary-science-reviews/
id ftuniveneziairis:oai:iris.unive.it:10278/3717201
record_format openpolar
spelling ftuniveneziairis:oai:iris.unive.it:10278/3717201 2024-04-14T08:02:51+00:00 Comparative carbon cycle dynamics of the present and last interglacial Brovkin V. Brucher T. Kleinen T. Zaehle S. Joos F. Roth R. Spahni R. Schmitt J. Fischer H. Leuenberger M. Stone E. J. Ridgwell A. Chappellaz J. Kehrwald N. Barbante C. Blunier T. Dahl Jensen D. Brovkin, V. Brucher, T. Kleinen, T. Zaehle, S. Joos, F. Roth, R. Spahni, R. Schmitt, J. Fischer, H. Leuenberger, M. Stone, E. J. Ridgwell, A. Chappellaz, J. Kehrwald, N. Barbante, C. Blunier, T. Dahl Jensen, D. 2016 ELETTRONICO http://hdl.handle.net/10278/3717201 https://doi.org/10.1016/j.quascirev.2016.01.028 http://www.journals.elsevier.com/quaternary-science-reviews/ eng eng info:eu-repo/semantics/altIdentifier/wos/WOS:000373547100002 volume:137 firstpage:15 lastpage:32 numberofpages:18 journal:QUATERNARY SCIENCE REVIEWS info:eu-repo/grantAgreement/EC/FP7/243908 http://hdl.handle.net/10278/3717201 doi:10.1016/j.quascirev.2016.01.028 info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-84957092317 http://www.journals.elsevier.com/quaternary-science-reviews/ info:eu-repo/semantics/openAccess Carbon cycle Climate Coral reef Fire Interglacial Model Peatland The Eemian The Holocene Settore CHIM/01 - Chimica Analitica Settore CHIM/12 - Chimica dell'Ambiente e dei Beni Culturali Settore GEO/08 - Geochimica e Vulcanologia info:eu-repo/semantics/article 2016 ftuniveneziairis https://doi.org/10.1016/j.quascirev.2016.01.028 2024-03-21T18:10:17Z Changes in temperature and carbon dioxide during glacial cycles recorded in Antarctic ice cores are tightly coupled. However, this relationship does not hold for interglacials. While climate cooled towards the end of both the last (Eemian) and present (Holocene) interglacials, CO2 remained stable during the Eemian while rising in the Holocene. We identify and review twelve biogeochemical mechanisms of terrestrial (vegetation dynamics and CO2 fertilization, land use, wildfire, accumulation of peat, changes in permafrost carbon, subaerial volcanic outgassing) and marine origin (changes in sea surface temperature, carbonate compensation to deglaciation and terrestrial biosphere regrowth, shallow-water carbonate sedimentation, changes in the soft tissue pump, and methane hydrates), which potentially may have contributed to the CO2 dynamics during interglacials but which remain not well quantified. We use three Earth System Models (ESMs) of intermediate complexity to compare effects of selected mechanisms on the interglacial CO2 and delta(CO2)-C-13 changes, focusing on those with substantial potential impacts: namely carbonate sedimentation in shallow waters, peat growth, and (in the case of the Holocene) human land use. A set of specified carbon cycle forcings could qualitatively explain atmospheric CO2 dynamics from 8 ka BP to the pre-industrial. However, when applied to Eemian boundary conditions from 126 to 115 ka BP, the same set of forcings led to disagreement with the observed direction of CO2 changes after 122 ka BP. This failure to simulate late-Eemian CO2 dynamics could be a result of the imposed forcings such as prescribed CaCO3 accumulation and/or an incorrect response of simulated terrestrial carbon to the surface cooling at the end of the interglacial. These experiments also reveal that key natural processes of interglacial CO2 dynamics - shallow water CaCO3 accumulation, peat and permafrost carbon dynamics are not well represented in the current ESMs. Global-scale modeling of these long-term carbon ... Article in Journal/Newspaper Antarc* Antarctic Ice permafrost Università Ca’ Foscari Venezia: ARCA (Archivio Istituzionale della Ricerca) Antarctic Quaternary Science Reviews 137 15 32
institution Open Polar
collection Università Ca’ Foscari Venezia: ARCA (Archivio Istituzionale della Ricerca)
op_collection_id ftuniveneziairis
language English
topic Carbon cycle
Climate
Coral reef
Fire
Interglacial
Model
Peatland
The Eemian
The Holocene
Settore CHIM/01 - Chimica Analitica
Settore CHIM/12 - Chimica dell'Ambiente e dei Beni Culturali
Settore GEO/08 - Geochimica e Vulcanologia
spellingShingle Carbon cycle
Climate
Coral reef
Fire
Interglacial
Model
Peatland
The Eemian
The Holocene
Settore CHIM/01 - Chimica Analitica
Settore CHIM/12 - Chimica dell'Ambiente e dei Beni Culturali
Settore GEO/08 - Geochimica e Vulcanologia
Brovkin V.
Brucher T.
Kleinen T.
Zaehle S.
Joos F.
Roth R.
Spahni R.
Schmitt J.
Fischer H.
Leuenberger M.
Stone E. J.
Ridgwell A.
Chappellaz J.
Kehrwald N.
Barbante C.
Blunier T.
Dahl Jensen D.
Comparative carbon cycle dynamics of the present and last interglacial
topic_facet Carbon cycle
Climate
Coral reef
Fire
Interglacial
Model
Peatland
The Eemian
The Holocene
Settore CHIM/01 - Chimica Analitica
Settore CHIM/12 - Chimica dell'Ambiente e dei Beni Culturali
Settore GEO/08 - Geochimica e Vulcanologia
description Changes in temperature and carbon dioxide during glacial cycles recorded in Antarctic ice cores are tightly coupled. However, this relationship does not hold for interglacials. While climate cooled towards the end of both the last (Eemian) and present (Holocene) interglacials, CO2 remained stable during the Eemian while rising in the Holocene. We identify and review twelve biogeochemical mechanisms of terrestrial (vegetation dynamics and CO2 fertilization, land use, wildfire, accumulation of peat, changes in permafrost carbon, subaerial volcanic outgassing) and marine origin (changes in sea surface temperature, carbonate compensation to deglaciation and terrestrial biosphere regrowth, shallow-water carbonate sedimentation, changes in the soft tissue pump, and methane hydrates), which potentially may have contributed to the CO2 dynamics during interglacials but which remain not well quantified. We use three Earth System Models (ESMs) of intermediate complexity to compare effects of selected mechanisms on the interglacial CO2 and delta(CO2)-C-13 changes, focusing on those with substantial potential impacts: namely carbonate sedimentation in shallow waters, peat growth, and (in the case of the Holocene) human land use. A set of specified carbon cycle forcings could qualitatively explain atmospheric CO2 dynamics from 8 ka BP to the pre-industrial. However, when applied to Eemian boundary conditions from 126 to 115 ka BP, the same set of forcings led to disagreement with the observed direction of CO2 changes after 122 ka BP. This failure to simulate late-Eemian CO2 dynamics could be a result of the imposed forcings such as prescribed CaCO3 accumulation and/or an incorrect response of simulated terrestrial carbon to the surface cooling at the end of the interglacial. These experiments also reveal that key natural processes of interglacial CO2 dynamics - shallow water CaCO3 accumulation, peat and permafrost carbon dynamics are not well represented in the current ESMs. Global-scale modeling of these long-term carbon ...
author2 Brovkin, V.
Brucher, T.
Kleinen, T.
Zaehle, S.
Joos, F.
Roth, R.
Spahni, R.
Schmitt, J.
Fischer, H.
Leuenberger, M.
Stone, E. J.
Ridgwell, A.
Chappellaz, J.
Kehrwald, N.
Barbante, C.
Blunier, T.
Dahl Jensen, D.
format Article in Journal/Newspaper
author Brovkin V.
Brucher T.
Kleinen T.
Zaehle S.
Joos F.
Roth R.
Spahni R.
Schmitt J.
Fischer H.
Leuenberger M.
Stone E. J.
Ridgwell A.
Chappellaz J.
Kehrwald N.
Barbante C.
Blunier T.
Dahl Jensen D.
author_facet Brovkin V.
Brucher T.
Kleinen T.
Zaehle S.
Joos F.
Roth R.
Spahni R.
Schmitt J.
Fischer H.
Leuenberger M.
Stone E. J.
Ridgwell A.
Chappellaz J.
Kehrwald N.
Barbante C.
Blunier T.
Dahl Jensen D.
author_sort Brovkin V.
title Comparative carbon cycle dynamics of the present and last interglacial
title_short Comparative carbon cycle dynamics of the present and last interglacial
title_full Comparative carbon cycle dynamics of the present and last interglacial
title_fullStr Comparative carbon cycle dynamics of the present and last interglacial
title_full_unstemmed Comparative carbon cycle dynamics of the present and last interglacial
title_sort comparative carbon cycle dynamics of the present and last interglacial
publishDate 2016
url http://hdl.handle.net/10278/3717201
https://doi.org/10.1016/j.quascirev.2016.01.028
http://www.journals.elsevier.com/quaternary-science-reviews/
geographic Antarctic
geographic_facet Antarctic
genre Antarc*
Antarctic
Ice
permafrost
genre_facet Antarc*
Antarctic
Ice
permafrost
op_relation info:eu-repo/semantics/altIdentifier/wos/WOS:000373547100002
volume:137
firstpage:15
lastpage:32
numberofpages:18
journal:QUATERNARY SCIENCE REVIEWS
info:eu-repo/grantAgreement/EC/FP7/243908
http://hdl.handle.net/10278/3717201
doi:10.1016/j.quascirev.2016.01.028
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-84957092317
http://www.journals.elsevier.com/quaternary-science-reviews/
op_rights info:eu-repo/semantics/openAccess
op_doi https://doi.org/10.1016/j.quascirev.2016.01.028
container_title Quaternary Science Reviews
container_volume 137
container_start_page 15
op_container_end_page 32
_version_ 1796317944965234688