Effect of centimetric freezing of the near subsurface on Rayleigh and Love wave velocity in ambient seismic noise correlations
International audience SUMMARY About a decade ago, noise-based monitoring became a key tool in seismology. One of the tools is passive image interferometry (PII), which uses noise correlation functions (NCF) to retrieve seismic velocity variations. Most studies apply PII to vertical components recor...
Published in: | Geophysical Journal International |
---|---|
Main Authors: | , , |
Other Authors: | , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
HAL CCSD
2021
|
Subjects: | |
Online Access: | https://hal.science/hal-03384965 https://hal.science/hal-03384965v2/document https://hal.science/hal-03384965v2/file/manuscript_final.pdf https://doi.org/10.1093/gji/ggaa406 |
id |
ftuniveiffel:oai:HAL:hal-03384965v2 |
---|---|
record_format |
openpolar |
spelling |
ftuniveiffel:oai:HAL:hal-03384965v2 2023-05-15T17:58:18+02:00 Effect of centimetric freezing of the near subsurface on Rayleigh and Love wave velocity in ambient seismic noise correlations Steinmann, René Hadziioannou, Céline Larose, Eric Centre National de la Recherche Scientifique (CNRS) Institut des Sciences de la Terre (ISTerre) Institut national des sciences de l'Univers (INSU - CNRS)-Institut de recherche pour le développement IRD : UR219-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Université Gustave Eiffel-Université Grenoble Alpes (UGA) 2021-01 https://hal.science/hal-03384965 https://hal.science/hal-03384965v2/document https://hal.science/hal-03384965v2/file/manuscript_final.pdf https://doi.org/10.1093/gji/ggaa406 en eng HAL CCSD Oxford University Press (OUP) info:eu-repo/semantics/altIdentifier/doi/10.1093/gji/ggaa406 hal-03384965 https://hal.science/hal-03384965 https://hal.science/hal-03384965v2/document https://hal.science/hal-03384965v2/file/manuscript_final.pdf doi:10.1093/gji/ggaa406 info:eu-repo/semantics/OpenAccess ISSN: 0956-540X EISSN: 1365-246X Geophysical Journal International https://hal.science/hal-03384965 Geophysical Journal International, 2021, 224 (1), pp.626-636. ⟨10.1093/gji/ggaa406⟩ [SDU.ENVI]Sciences of the Universe [physics]/Continental interfaces environment info:eu-repo/semantics/article Journal articles 2021 ftuniveiffel https://doi.org/10.1093/gji/ggaa406 2023-03-25T21:50:49Z International audience SUMMARY About a decade ago, noise-based monitoring became a key tool in seismology. One of the tools is passive image interferometry (PII), which uses noise correlation functions (NCF) to retrieve seismic velocity variations. Most studies apply PII to vertical components recording oceanic low-frequent ambient noise ( < 1 Hz). In this work, PII is applied to high-frequent urban ambient noise ( > 1 Hz) on three three-component sensors. With environmental sensors inside the subsurface and in the air, we are able to connect observed velocity variations with environmental parameters. Temperatures below 0 °C correlate well with strong shear wave velocity increases. The temperature sensors inside the ground suggest that a frozen layer of less than 5 cm thickness causes apparent velocity increases above 2 % , depending on the channel pair. The observations indicate that the different velocity variation retrieved from the different channel pairs are due to different surface wave responses inherent in the channel pairs. With dispersion curve modelling in a 1-D medium we can verify that surfaces waves of several tens of metres wavelength experience a velocity increase of several percent due to a centimetres thick frozen layer. Moreover, the model verifies that Love waves show larger velocity increases than Rayleigh waves. The findings of this study provide new insights for monitoring with PII. A few days with temperature below 0 °C can already mask other potential targets (e.g. faults or storage sites). Here, we suggest to use vertical components, which is less sensitive to the frozen layer at the surface. If the target is the seasonal freezing, like in permafrost studies, we suggest to use three-component sensors in order to retrieve the Love wave response. This opens the possibility to study other small-scale processes at the shallow subsurface with surface wave responses. Article in Journal/Newspaper permafrost HAL Univ-Eiffel (Université Gustave Eiffel) Geophysical Journal International 224 1 626 636 |
institution |
Open Polar |
collection |
HAL Univ-Eiffel (Université Gustave Eiffel) |
op_collection_id |
ftuniveiffel |
language |
English |
topic |
[SDU.ENVI]Sciences of the Universe [physics]/Continental interfaces environment |
spellingShingle |
[SDU.ENVI]Sciences of the Universe [physics]/Continental interfaces environment Steinmann, René Hadziioannou, Céline Larose, Eric Effect of centimetric freezing of the near subsurface on Rayleigh and Love wave velocity in ambient seismic noise correlations |
topic_facet |
[SDU.ENVI]Sciences of the Universe [physics]/Continental interfaces environment |
description |
International audience SUMMARY About a decade ago, noise-based monitoring became a key tool in seismology. One of the tools is passive image interferometry (PII), which uses noise correlation functions (NCF) to retrieve seismic velocity variations. Most studies apply PII to vertical components recording oceanic low-frequent ambient noise ( < 1 Hz). In this work, PII is applied to high-frequent urban ambient noise ( > 1 Hz) on three three-component sensors. With environmental sensors inside the subsurface and in the air, we are able to connect observed velocity variations with environmental parameters. Temperatures below 0 °C correlate well with strong shear wave velocity increases. The temperature sensors inside the ground suggest that a frozen layer of less than 5 cm thickness causes apparent velocity increases above 2 % , depending on the channel pair. The observations indicate that the different velocity variation retrieved from the different channel pairs are due to different surface wave responses inherent in the channel pairs. With dispersion curve modelling in a 1-D medium we can verify that surfaces waves of several tens of metres wavelength experience a velocity increase of several percent due to a centimetres thick frozen layer. Moreover, the model verifies that Love waves show larger velocity increases than Rayleigh waves. The findings of this study provide new insights for monitoring with PII. A few days with temperature below 0 °C can already mask other potential targets (e.g. faults or storage sites). Here, we suggest to use vertical components, which is less sensitive to the frozen layer at the surface. If the target is the seasonal freezing, like in permafrost studies, we suggest to use three-component sensors in order to retrieve the Love wave response. This opens the possibility to study other small-scale processes at the shallow subsurface with surface wave responses. |
author2 |
Centre National de la Recherche Scientifique (CNRS) Institut des Sciences de la Terre (ISTerre) Institut national des sciences de l'Univers (INSU - CNRS)-Institut de recherche pour le développement IRD : UR219-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Université Gustave Eiffel-Université Grenoble Alpes (UGA) |
format |
Article in Journal/Newspaper |
author |
Steinmann, René Hadziioannou, Céline Larose, Eric |
author_facet |
Steinmann, René Hadziioannou, Céline Larose, Eric |
author_sort |
Steinmann, René |
title |
Effect of centimetric freezing of the near subsurface on Rayleigh and Love wave velocity in ambient seismic noise correlations |
title_short |
Effect of centimetric freezing of the near subsurface on Rayleigh and Love wave velocity in ambient seismic noise correlations |
title_full |
Effect of centimetric freezing of the near subsurface on Rayleigh and Love wave velocity in ambient seismic noise correlations |
title_fullStr |
Effect of centimetric freezing of the near subsurface on Rayleigh and Love wave velocity in ambient seismic noise correlations |
title_full_unstemmed |
Effect of centimetric freezing of the near subsurface on Rayleigh and Love wave velocity in ambient seismic noise correlations |
title_sort |
effect of centimetric freezing of the near subsurface on rayleigh and love wave velocity in ambient seismic noise correlations |
publisher |
HAL CCSD |
publishDate |
2021 |
url |
https://hal.science/hal-03384965 https://hal.science/hal-03384965v2/document https://hal.science/hal-03384965v2/file/manuscript_final.pdf https://doi.org/10.1093/gji/ggaa406 |
genre |
permafrost |
genre_facet |
permafrost |
op_source |
ISSN: 0956-540X EISSN: 1365-246X Geophysical Journal International https://hal.science/hal-03384965 Geophysical Journal International, 2021, 224 (1), pp.626-636. ⟨10.1093/gji/ggaa406⟩ |
op_relation |
info:eu-repo/semantics/altIdentifier/doi/10.1093/gji/ggaa406 hal-03384965 https://hal.science/hal-03384965 https://hal.science/hal-03384965v2/document https://hal.science/hal-03384965v2/file/manuscript_final.pdf doi:10.1093/gji/ggaa406 |
op_rights |
info:eu-repo/semantics/OpenAccess |
op_doi |
https://doi.org/10.1093/gji/ggaa406 |
container_title |
Geophysical Journal International |
container_volume |
224 |
container_issue |
1 |
container_start_page |
626 |
op_container_end_page |
636 |
_version_ |
1766166870540419072 |