Modelling the effects of shrub-tundra on snow and runoff

Observational and modelling studies show that the warming of the Arctic is leading to shrub expansion. This shift in vegetation cover is expected to significantly alter the distribution of snow across the landscape and the interactions between the land surface and the atmosphere. Shrubs capture wind...

Full description

Bibliographic Details
Main Author: Bauduin-Ménard, Cécile
Other Authors: Clark, Douglas, Essery, Richard, CLASSIC network, Natural Environment Research Council (NERC), IP3 network
Format: Doctoral or Postdoctoral Thesis
Language:English
Published: The University of Edinburgh 2010
Subjects:
Online Access:http://hdl.handle.net/1842/4756
id ftunivedinburgh:oai:era.ed.ac.uk:1842/4756
record_format openpolar
spelling ftunivedinburgh:oai:era.ed.ac.uk:1842/4756 2024-06-09T07:37:46+00:00 Modelling the effects of shrub-tundra on snow and runoff Bauduin-Ménard, Cécile Clark, Douglas Essery, Richard CLASSIC network Natural Environment Research Council (NERC) IP3 network 2010 application/pdf http://hdl.handle.net/1842/4756 en eng The University of Edinburgh The University of Edinburgh. College of Science and Engineering http://hdl.handle.net/1842/4756 snow shrub-tundra Arctic hydrometeorology energy-balance Thesis or Dissertation Doctoral PhD Doctor of Philosophy 2010 ftunivedinburgh 2024-05-10T03:12:17Z Observational and modelling studies show that the warming of the Arctic is leading to shrub expansion. This shift in vegetation cover is expected to significantly alter the distribution of snow across the landscape and the interactions between the land surface and the atmosphere. Shrubs capture wind-blown snow, increasing snow depth and decreasing winter water loss through sublimation, and bend beneath the weight of snow, affecting albedo. Snow is highly insulative and affects the soil hydrological and thermal properties. Therefore, as the snow-vegetation-soil interactions is expected to be at the core of feedback loops leading to further shrub expansion, there is a need for models to be able to simulate these processes accurately. Initially using the community land surface model JULES (Joint UK Land Environment Simulator) this study investigates the effects of shrub-tundra on snow and runoff. Alternative formulations of soil processes are proposed, which are better adapted to the representation of subgrid heterogeneity in cold regions than the current model formulation, and evaluated over the Abisko and Torne-Kalix river basins. In addition, a high resolution shrub bending model, which calculates the exposed winter shrub fraction, is developed and parameterised for use alongside the snow cover parameterisation in JULES in order to provide a better representation of shrub-specific processes. This revised JULES more than doubles the efficiency coefficient and halfs the negative bias between modelled and observed runoff in the shrub-tundra Abisko basin. However, the current structure of the model is found to be inadequate for use in investigating the effect of shrub-tundra expansion because it calculates a single energy balance for the snow-free and the snow-covered areas. To address this issue, a distributed three-source (snow-shrub-ground) model (D3SM) is developed. D3SM is evaluated against snow and energy ux measurements from a shrub-tundra basin in the Yukon, Canada, and is found to reproduce snowmelt ... Doctoral or Postdoctoral Thesis Abisko albedo Arctic Tundra Yukon Edinburgh Research Archive (ERA - University of Edinburgh) Abisko ENVELOPE(18.829,18.829,68.349,68.349) Arctic Canada Jules ENVELOPE(140.917,140.917,-66.742,-66.742) Kalix ENVELOPE(23.156,23.156,65.853,65.853) Yukon
institution Open Polar
collection Edinburgh Research Archive (ERA - University of Edinburgh)
op_collection_id ftunivedinburgh
language English
topic snow
shrub-tundra
Arctic
hydrometeorology
energy-balance
spellingShingle snow
shrub-tundra
Arctic
hydrometeorology
energy-balance
Bauduin-Ménard, Cécile
Modelling the effects of shrub-tundra on snow and runoff
topic_facet snow
shrub-tundra
Arctic
hydrometeorology
energy-balance
description Observational and modelling studies show that the warming of the Arctic is leading to shrub expansion. This shift in vegetation cover is expected to significantly alter the distribution of snow across the landscape and the interactions between the land surface and the atmosphere. Shrubs capture wind-blown snow, increasing snow depth and decreasing winter water loss through sublimation, and bend beneath the weight of snow, affecting albedo. Snow is highly insulative and affects the soil hydrological and thermal properties. Therefore, as the snow-vegetation-soil interactions is expected to be at the core of feedback loops leading to further shrub expansion, there is a need for models to be able to simulate these processes accurately. Initially using the community land surface model JULES (Joint UK Land Environment Simulator) this study investigates the effects of shrub-tundra on snow and runoff. Alternative formulations of soil processes are proposed, which are better adapted to the representation of subgrid heterogeneity in cold regions than the current model formulation, and evaluated over the Abisko and Torne-Kalix river basins. In addition, a high resolution shrub bending model, which calculates the exposed winter shrub fraction, is developed and parameterised for use alongside the snow cover parameterisation in JULES in order to provide a better representation of shrub-specific processes. This revised JULES more than doubles the efficiency coefficient and halfs the negative bias between modelled and observed runoff in the shrub-tundra Abisko basin. However, the current structure of the model is found to be inadequate for use in investigating the effect of shrub-tundra expansion because it calculates a single energy balance for the snow-free and the snow-covered areas. To address this issue, a distributed three-source (snow-shrub-ground) model (D3SM) is developed. D3SM is evaluated against snow and energy ux measurements from a shrub-tundra basin in the Yukon, Canada, and is found to reproduce snowmelt ...
author2 Clark, Douglas
Essery, Richard
CLASSIC network
Natural Environment Research Council (NERC)
IP3 network
format Doctoral or Postdoctoral Thesis
author Bauduin-Ménard, Cécile
author_facet Bauduin-Ménard, Cécile
author_sort Bauduin-Ménard, Cécile
title Modelling the effects of shrub-tundra on snow and runoff
title_short Modelling the effects of shrub-tundra on snow and runoff
title_full Modelling the effects of shrub-tundra on snow and runoff
title_fullStr Modelling the effects of shrub-tundra on snow and runoff
title_full_unstemmed Modelling the effects of shrub-tundra on snow and runoff
title_sort modelling the effects of shrub-tundra on snow and runoff
publisher The University of Edinburgh
publishDate 2010
url http://hdl.handle.net/1842/4756
long_lat ENVELOPE(18.829,18.829,68.349,68.349)
ENVELOPE(140.917,140.917,-66.742,-66.742)
ENVELOPE(23.156,23.156,65.853,65.853)
geographic Abisko
Arctic
Canada
Jules
Kalix
Yukon
geographic_facet Abisko
Arctic
Canada
Jules
Kalix
Yukon
genre Abisko
albedo
Arctic
Tundra
Yukon
genre_facet Abisko
albedo
Arctic
Tundra
Yukon
op_relation The University of Edinburgh. College of Science and Engineering
http://hdl.handle.net/1842/4756
_version_ 1801372896546783232