Summary: | Arctic and subarctic ecosystems are experiencing rapid changes in vegetation composition and productivity due to global warming. Tundra wetlands are especially susceptible to these changes, which may trigger shifts in soil moisture dynamics. It is therefore essential to accurately map plant biomass and topsoil moisture. In this study, we mapped total, wood, and leaf above ground biomass and topsoil moisture in subarctic tundra wetlands located between Norway and Finland by linking models derived from Unoccupied Aerial Vehicles with multiple satellite data sources using the Extreme Gradient Boosting algorithm. The most accurate predictions for topsoil moisture (R2 = 0.73) used a set of red edge-based vegetation indices with a spatial resolution of 20 m per pixel. On the contrary, wood biomass showed the lowest accuracies across all tested models (R2 = 0.38). We found a trade-off between the spatial resolution and the performance of upscaling models, where smaller pixel sizes generally led to lower accuracies. However, we were able to compensate for reduced accuracy at smaller pixel sizes using Copernicus phenology metrics. A modelling uncertainty assessment revealed that the uncertainty of predictions increased with decreasing pixel sizes and increasing number of co-predictors. Our approach could improve efforts to map and monitor changes in vegetation at regional to pan-Arctic scales. published version peerReviewed
|