Sensitivity of Pine Island Glacier to observed ocean forcing

We present subannual observations (2009–2014) of a major West Antarctic glacier (Pine Island Glacier) and the neighboring ocean. Ongoing glacier retreat and accelerated ice flow were likely triggered a few decades ago by increased ocean-induced thinning, which may have initiated marine ice sheet ins...

Full description

Bibliographic Details
Published in:Geophysical Research Letters
Main Authors: Christianson, Knut, Bushuk, Mitchell, Dutrieux, Pierre, Parizek, Byron R., Joughin, Ian R., Alley, Richard B., Shean, David E., Abrahamsen, E. Povl, Anandakrishnan, Sridhar, Heywood, Karen J., Kim, Tae-Wan, Lee, Sang Hoon, Nicholls, Keith, Stanton, Tim, Truffer, Martin, Webber, Benjamin G. M., Jenkins, Adrian, Jacobs, Stan, Bindschadler, Robert, Holland, David M.
Format: Article in Journal/Newspaper
Language:English
Published: 2016
Subjects:
Online Access:https://ueaeprints.uea.ac.uk/id/eprint/61655/
https://ueaeprints.uea.ac.uk/id/eprint/61655/1/Published_manuscript.pdf
https://doi.org/10.1002/2016GL070500
Description
Summary:We present subannual observations (2009–2014) of a major West Antarctic glacier (Pine Island Glacier) and the neighboring ocean. Ongoing glacier retreat and accelerated ice flow were likely triggered a few decades ago by increased ocean-induced thinning, which may have initiated marine ice sheet instability. Following a subsequent 60% drop in ocean heat content from early 2012 to late 2013, ice flow slowed, but by < 4%, with flow recovering as the ocean warmed to prior temperatures. During this cold-ocean period, the evolving glacier-bed/ice shelf system was also in a geometry favorable to stabilization. However, despite a minor, temporary decrease in ice discharge, the basin-wide thinning signal did not change. Thus, as predicted by theory, once marine ice sheet instability is underway, a single transient high-amplitude ocean cooling has only a relatively minor effect on ice flow. The long-term effects of ocean temperature variability on ice flow, however, are not yet known.