Geodetic mass balance of Azarova glacier, Kodar mountains, eastern Siberia, and its links to observed and projected climatic change.

The Kodar mountains in eastern Siberia accommodate 30 small, cold-based glaciers with a combined surface area previously estimated at 19 km2. Very little is known about these glaciers, which were first surveyed in the late 1950s. In this paper, we use terrestrial photogrammetry to calculate changes...

Full description

Bibliographic Details
Published in:Annals of Glaciology
Main Authors: Shahgenova, M., Popovnin, V., Aleynikov, A., Stokes, C.R.
Format: Article in Journal/Newspaper
Language:unknown
Published: International Glaciological Society 2011
Subjects:
Online Access:http://dro.dur.ac.uk/8143/
http://dro.dur.ac.uk/8143/1/8143.pdf
https://doi.org/10.3189/172756411797252275
Description
Summary:The Kodar mountains in eastern Siberia accommodate 30 small, cold-based glaciers with a combined surface area previously estimated at 19 km2. Very little is known about these glaciers, which were first surveyed in the late 1950s. In this paper, we use terrestrial photogrammetry to calculate changes in the surface area, elevation, volume and geodetic mass balance of Azarova glacier between 1979 and 2007 and relate these to meteorological data from nearby Chara weather station (1938–2007). The glacier surface area declined by 20 6.9% and the surface lowered by an average of 20 1.8 m (mean thinning 0.71 m a–1), resulting in a strongly negative cumulative and average mass balance of –18 1.6 m w. e. and –640 60 mm w. e. a–1, respectively. The July–August air temperature increased at a rate of 0.0368 C a–1 between 1979 and 2007, and the 1980–2007 period was on average 18 C warmer than 1938–79. In comparison to the 1961–90 period, regional climate projections for the A2 and B2 CO2 emission scenarios developed using the PRECIS regional climate model indicate that summer temperatures will increase by 2.6–4.7°C and 4.9–6.2°C, respectively, during the 2071–2100 period. The annual total of solid precipitation will increase by 20% under the B2 scenario but is projected to decline by 3% under the A2 scenario. Azarova glacier exhibits high sensitivity to climatic warming due to its low elevation and exposure to comparatively high summer temperatures. Further summer warming and a decline in solid precipitation projected under the A2 scenario will force Azarova glacier to retreat further, but the impact of an increase in solid precipitation projected under the B2 scenario is more uncertain and requires further investigation before a more conclusive prediction can be made.